【NPL自然语言处理】带你迅速了解传统RNN模型

本文涉及的产品
NLP自然语言处理_高级版,每接口累计50万次
NLP自然语言处理_基础版,每接口每天50万次
NLP 自学习平台,3个模型定制额度 1个月
简介: 【NPL自然语言处理】带你迅速了解传统RNN模型

学习目标

🍀 了解传统RNN的内部结构及计算公式.

🍀 掌握Pytorch中传统RNN工具的使用.

🍀 了解传统RNN的优势与缺点.

🍔 什么是RNN模型

  • RNN(Recurrent Neural Network), 中文称作循环神经网络, 它一般以序列数据为输入, 通过网络内部的结构设计有效捕捉序列之间的关系特征, 一般也是以序列形式进行输出.

 

  • 一般单层神经网络结构:

 

  • RNN单层网络结构:

 

  • 以时间步对RNN进行展开后的单层网络结构:

 

  • RNN的循环机制使模型隐层上一时间步产生的结果, 能够作为当下时间步输入的一部分(当下时间步的输入除了正常的输入外还包括上一步的隐层输出)对当下时间步的输出产生影响.

 🐼 RNN模型的作用

  • 因为RNN结构能够很好利用序列之间的关系, 因此针对自然界具有连续性的输入序列, 如人类的语言, 语音等进行很好的处理, 广泛应用于NLP领域的各项任务, 如文本分类, 情感分析, 意图识别, 机器翻译等.

🍔 传统RNN的内部结构图

1.1 RNN结构分析

 

  • 结构解释图:

 

  • 内部结构分析:
  • 我们把目光集中在中间的方块部分, 它的输入有两部分, 分别是h(t-1)以及x(t), 代表上一时间步的隐层输出, 以及此时间步的输入, 它们进入RNN结构体后, 会"融合"到一起, 这种融合我们根据结构解释可知, 是将二者进行拼接, 形成新的张量[x(t), h(t-1)], 之后这个新的张量将通过一个全连接层(线性层), 该层使用tanh作为激活函数, 最终得到该时间步的输出h(t), 它将作为下一个时间步的输入和x(t+1)一起进入结构体. 以此类推.
  • 内部结构过程演示:

 

  • 根据结构分析得出内部计算公式:ht=tanh(Wt[Xt,ht−1]+bt)ℎ�=���ℎ(��[��,ℎ�−1]+��)
  • 激活函数tanh的作用:
  • 用于帮助调节流经网络的值, tanh函数将值压缩在-1和1之间.

 

1.2 使用Pytorch构建RNN模型

  • 位置: 在torch.nn工具包之中, 通过torch.nn.RNN可调用
  • nn.RNN类初始化主要参数解释:
  • input_size: 输入张量x中特征维度的大小
  • hidden_size: 隐层张量h中特征维度的大小
  • num_layers: 隐含层的数量
  • nonlinearity: 激活函数的选择, 默认是tanh
  • nn.RNN类实例化对象主要参数解释:
  • input: 输入张量x
  • h0: 初始化的隐层张量h
  • nn.RNN使用示例:
# 导入工具包
>>> import torch
>>> import torch.nn as nn
>>> rnn = nn.RNN(5, 6, 1)
>>> input = torch.randn(1, 3, 5)
>>> h0 = torch.randn(1, 3, 6)
>>> output, hn = rnn(input, h0)
>>> output
tensor([[[ 0.4282, -0.8475, -0.0685, -0.4601, -0.8357,  0.1252],
         [ 0.5758, -0.2823,  0.4822, -0.4485, -0.7362,  0.0084],
         [ 0.9224, -0.7479, -0.3682, -0.5662, -0.9637,  0.4938]]],
       grad_fn=<StackBackward>)
>>> hn
tensor([[[ 0.4282, -0.8475, -0.0685, -0.4601, -0.8357,  0.1252],
         [ 0.5758, -0.2823,  0.4822, -0.4485, -0.7362,  0.0084],
         [ 0.9224, -0.7479, -0.3682, -0.5662, -0.9637,  0.4938]]],
       grad_fn=<StackBackward>)

1.3 传统RNN优缺点

1 传统RNN的优势

  • 由于内部结构简单, 对计算资源要求低, 相比之后我们要学习的RNN变体:LSTM和GRU模型参数总量少了很多, 在短序列任务上性能和效果都表现优异.

2 传统RNN的缺点

  • 传统RNN在解决长序列之间的关联时, 通过实践,证明经典RNN表现很差, 原因是在进行反向传播的时候, 过长的序列导致梯度的计算异常, 发生梯度消失或爆炸.

3 梯度消失或爆炸介绍

根据反向传播算法和链式法则, 梯度的计算可以简化为以下公式

  • 其中sigmoid的导数值域是固定的, 在[0, 0.25]之间, 而一旦公式中的w也小于1, 那么通过这样的公式连乘后, 最终的梯度就会变得非常非常小, 这种现象称作梯度消失. 反之, 如果我们人为的增大w的值, 使其大于1, 那么连乘够就可能造成梯度过大, 称作梯度爆炸.
  • 梯度消失或爆炸的危害:
  • 如果在训练过程中发生了梯度消失,权重无法被更新,最终导致训练失败; 梯度爆炸所带来的梯度过大,大幅度更新网络参数,在极端情况下,结果会溢出(NaN值).

🍔 小结

  • 学习了什么是RNN模型:
  • RNN(Recurrent Neural Network), 中文称作循环神经网络, 它一般以序列数据为输入, 通过网络内部的结构设计有效捕捉序列之间的关系特征, 一般也是以序列形式进行输出.
  • 学习了RNN模型的作用:
  • 因为RNN结构能够很好利用序列之间的关系, 因此针对自然界具有连续性的输入序列, 如人类的语言, 语音等进行很好的处理, 广泛应用于NLP领域的各项任务, 如文本分类, 情感分析, 意图识别, 机器翻译等.
  • 学习了传统RNN的结构并进行了分析;
  • 它的输入有两部分, 分别是h(t-1)以及x(t), 代表上一时间步的隐层输出, 以及此时间步的输入, 它们进入RNN结构体后, 会"融合"到一起, 这种融合我们根据结构解释可知, 是将二者进行拼接, 形成新的张量[x(t), h(t-1)], 之后这个新的张量将通过一个全连接层(线性层), 该层使用tanh作为激活函数, 最终得到该时间步的输出h(t), 它将作为下一个时间步的输入和x(t+1)一起进入结构体. 以此类推.
  • 根据结构分析得出了传统RNN的计算公式.
  • 学习了激活函数tanh的作用:
  • 用于帮助调节流经网络的值, tanh函数将值压缩在-1和1之间.
  • 学习了Pytorch中传统RNN工具的使用:
  • 位置: 在torch.nn工具包之中, 通过torch.nn.RNN可调用.
  • nn.RNN类初始化主要参数解释:
  • input_size: 输入张量x中特征维度的大小.
  • hidden_size: 隐层张量h中特征维度的大小.
  • num_layers: 隐含层的数量.
  • nonlinearity: 激活函数的选择, 默认是tanh.
  • nn.RNN类实例化对象主要参数解释:
  • input: 输入张量x.
  • h0: 初始化的隐层张量h.
  • 实现了nn.RNN的使用示例, 获得RNN的真实返回结果样式.
  • 学习了传统RNN的优势:
  • 由于内部结构简单, 对计算资源要求低, 相比之后我们要学习的RNN变体:LSTM和GRU模型参数总量少了很多, 在短序列任务上性能和效果都表现优异.
  • 学习了传统RNN的缺点:
  • 传统RNN在解决长序列之间的关联时, 通过实践,证明经典RNN表现很差, 原因是在进行反向传播的时候, 过长的序列导致梯度的计算异常, 发生梯度消失或爆炸.
  • 学习了什么是梯度消失或爆炸:
  • 根据反向传播算法和链式法则, 得到梯度的计算的简化公式:其中sigmoid的导数值域是固定的, 在[0, 0.25]之间, 而一旦公式中的w也小于1, 那么通过这样的公式连乘后, 最终的梯度就会变得非常非常小, 这种现象称作梯度消失. 反之, 如果我们人为的增大w的值, 使其大于1, 那么连乘够就可能造成梯度过大, 称作梯度爆炸.
  • 梯度消失或爆炸的危害:
  • 如果在训练过程中发生了梯度消失,权重无法被更新,最终导致训练失败; 梯度爆炸所带来的梯度过大,大幅度更新网络参数,在极端情况下,结果会溢出(NaN值).
相关文章
|
7天前
|
自然语言处理 PyTorch 算法框架/工具
掌握从零到一的进阶攻略:让你轻松成为BERT微调高手——详解模型微调全流程,含实战代码与最佳实践秘籍,助你应对各类NLP挑战!
【10月更文挑战第1天】随着深度学习技术的进步,预训练模型已成为自然语言处理(NLP)领域的常见实践。这些模型通过大规模数据集训练获得通用语言表示,但需进一步微调以适应特定任务。本文通过简化流程和示例代码,介绍了如何选择预训练模型(如BERT),并利用Python库(如Transformers和PyTorch)进行微调。文章详细说明了数据准备、模型初始化、损失函数定义及训练循环等关键步骤,并提供了评估模型性能的方法。希望本文能帮助读者更好地理解和实现模型微调。
23 2
掌握从零到一的进阶攻略:让你轻松成为BERT微调高手——详解模型微调全流程,含实战代码与最佳实践秘籍,助你应对各类NLP挑战!
|
2天前
|
机器学习/深度学习 自然语言处理 并行计算
探索深度学习中的Transformer模型及其在自然语言处理中的应用
【10月更文挑战第6天】探索深度学习中的Transformer模型及其在自然语言处理中的应用
10 0
|
6天前
|
机器学习/深度学习 自然语言处理 异构计算
【NLP自然语言处理】初识深度学习模型Transformer
【NLP自然语言处理】初识深度学习模型Transformer
|
6天前
|
机器学习/深度学习 数据采集 自然语言处理
【NLP自然语言处理】基于PyTorch深度学习框架构建RNN经典案例:构建人名分类器
【NLP自然语言处理】基于PyTorch深度学习框架构建RNN经典案例:构建人名分类器
|
2月前
|
机器学习/深度学习 自然语言处理 PyTorch
PyTorch与Hugging Face Transformers:快速构建先进的NLP模型
【8月更文第27天】随着自然语言处理(NLP)技术的快速发展,深度学习模型已经成为了构建高质量NLP应用程序的关键。PyTorch 作为一种强大的深度学习框架,提供了灵活的 API 和高效的性能,非常适合于构建复杂的 NLP 模型。Hugging Face Transformers 库则是目前最流行的预训练模型库之一,它为 PyTorch 提供了大量的预训练模型和工具,极大地简化了模型训练和部署的过程。
109 2
|
2月前
|
自然语言处理
【NLP】from glove import Glove的使用、模型保存和加载
使用 from glove import Glove 进行词向量训练、保存和加载的基本示例。
41 2
【NLP】from glove import Glove的使用、模型保存和加载
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
【深度学习】探讨最新的深度学习算法、模型创新以及在图像识别、自然语言处理等领域的应用进展
深度学习作为人工智能领域的重要分支,近年来在算法、模型以及应用领域都取得了显著的进展。以下将探讨最新的深度学习算法与模型创新,以及它们在图像识别、自然语言处理(NLP)等领域的应用进展。
104 6
|
2月前
|
机器学习/深度学习 自然语言处理 数据处理
|
2月前
|
自然语言处理
【NLP】如何实现快速加载gensim word2vec的预训练的词向量模型
本文探讨了如何提高使用gensim库加载word2vec预训练词向量模型的效率,提出了三种解决方案:保存模型以便快速重新加载、仅保存和加载所需词向量、以及使用Embedding工具库代替word2vec原训练权重。
153 2
|
3月前
|
自然语言处理 监控 自动驾驶
大模型在自然语言处理(NLP)、计算机视觉(CV)和多模态模型等领域应用最广
【7月更文挑战第26天】大模型在自然语言处理(NLP)、计算机视觉(CV)和多模态模型等领域应用最广
94 11