使用elk+redis搭建nginx日志分析平台(转)

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: logstash,elasticsearch,kibana 怎么进行nginx的日志分析呢?首先,架构方面,nginx是有日志文件的,它的每个请求的状态等都有日志文件进行记录。其次,需要有个队列,redis的list结构正好可以作为队列使用。

logstash,elasticsearch,kibana 怎么进行nginx的日志分析呢?首先,架构方面,nginx是有日志文件的,它的每个请求的状态等都有日志文件进行记录。其次,需要有个队列,redis的list结构正好可以作为队列使用。然后分析使用elasticsearch就可以进行分析和查询了。

我们需要的是一个分布式的,日志收集和分析系统。logstash有agent和indexer两个角色。对于agent角色,放在单独的web机器上面,然后这个agent不断地读取nginx的日志文件,每当它读到新的日志信息以后,就将日志传送到网络上的一台redis队列上。对于队列上的这些未处理的日志,有不同的几台logstash indexer进行接收和分析。分析之后存储到elasticsearch进行搜索分析。再由统一的kibana进行日志web界面的展示。

下面我计划在一台机器上实现这些角色。

准备工作

  • 安装了redis,开启在6379端口
  • 安装了elasticsearch, 开启在9200端口
  • 安装了kibana, 开启了监控web
  • logstash安装在/usr/local/logstash
  • nginx开启了日志,目录为:/usr/share/nginx/logs/test.access.log

设置nginx日志格式

在nginx.conf 中设置日志格式:logstash

log_format logstash '$http_host $server_addr $remote_addr [$time_local] "$request" ' '$request_body $status $body_bytes_sent "$http_referer" "$http_user_agent" ' '$request_time $upstream_response_time';

在vhost/test.conf中设置access日志:

access_log  /usr/share/nginx/logs/test.access.log  logstash;

开启logstash agent

注:这里也可以不用logstash,直接使用rsyslog

创建logstash agent 配置文件

vim /usr/local/logstash/etc/logstash_agent.conf

代码如下:

input {
        file {
                type => "nginx_access"
                path => ["/usr/share/nginx/logs/test.access.log"]
        }
}
output {
        redis {
                host => "localhost"
                data_type => "list"
                key => "logstash:redis" } }

启动logstash agent

/usr/local/logstash/bin/logstash -f /usr/local/logstash/etc/logstash_agent.conf

这个时候,它就会把test.access.log中的数据传送到redis中,相当于tail -f。

开启logstash indexer

创建 logstash indexer 配置文件

vim /usr/local/logstash/etc/logstash_indexer.conf

代码如下:

input {
        redis {
                host => "localhost"
                data_type => "list"
                key => "logstash:redis"
                type => "redis-input"
        }
}
filter {
    grok {
        match => [
            "message", "%{WORD:http_host} %{URIHOST:api_domain} %{IP:inner_ip} %{IP:lvs_ip} \[%{HTTPDATE:timestamp}\] \"%{WORD:http_verb} %{URIPATH:baseurl}(?:\?%{NOTSPACE:request}|) HTTP/%{NUMBER:http_version}\" (?:-|%{NOTSPACE:request}) %{NUMBER:http_status_code} (?:%{NUMBER:bytes_read}|-) %{QS:referrer} %{QS:agent} %{NUMBER:time_duration:float} (?:%{NUMBER:time_backend_response:float}|-)" ] } kv { prefix => "request." field_split => "&" source => "request" } urldecode { all_fields => true } date { type => "log-date" match => ["timestamp" , "dd/MMM/YYYY:HH:mm:ss Z"] } } output { elasticsearch { embedded => false protocol => "http" host => "localhost" port => "9200" index => "access-%{+YYYY.MM.dd}" } }

这份配置是将nginx_access结构化以后塞入elasticsearch中。

对这个配置进行下说明:

  • grok中的match正好匹配和不论是GET,还是POST的请求。
  • kv是将request中的A=B&C=D的key,value扩展开来,并且利用es的无schema的特性,保证了如果你增加了一个参数,可以立即生效
  • urldecode是为了保证参数中有中文的话进行urldecode
  • date是为了让es中保存的文档的时间为日志的时间,否则是插入es的时间

好了,现在的结构就完成了,你可以访问一次test.dev之后就在kibana的控制台看到这个访问的日志了。而且还是结构化好的了,非常方便查找。

使用kibana进行查看

依次开启es,logstash,kibana之后,可以使用es的head插件确认下es中有access-xx.xx.xx索引的数据,然后打开kibana的页面,第一次进入的时候会让你选择mapping,索引名字填写access-*,则kibana自动会创建mapping

http://www.cnblogs.com/yjf512/p/4199105.html

 

相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
相关文章
|
23天前
|
存储 运维 监控
超越传统模型:从零开始构建高效的日志分析平台——基于Elasticsearch的实战指南
【10月更文挑战第8天】随着互联网应用和微服务架构的普及,系统产生的日志数据量日益增长。有效地收集、存储、检索和分析这些日志对于监控系统健康状态、快速定位问题以及优化性能至关重要。Elasticsearch 作为一种分布式的搜索和分析引擎,以其强大的全文检索能力和实时数据分析能力成为日志处理的理想选择。
79 6
|
2月前
|
存储 消息中间件 网络协议
日志平台-ELK实操系列(一)
日志平台-ELK实操系列(一)
|
3天前
|
存储 监控 安全
|
28天前
|
存储 Prometheus NoSQL
大数据-44 Redis 慢查询日志 监视器 慢查询测试学习
大数据-44 Redis 慢查询日志 监视器 慢查询测试学习
22 3
|
2月前
|
NoSQL 关系型数据库 Redis
mall在linux环境下的部署(基于Docker容器),Docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongo
mall在linux环境下的部署(基于Docker容器),docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongodb、minio详细教程,拉取镜像、运行容器
mall在linux环境下的部署(基于Docker容器),Docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongo
|
1月前
|
NoSQL 网络协议 应用服务中间件
redis,memcached,nginx网络组件
redis,memcached,nginx网络组件
16 0
|
3月前
|
缓存 NoSQL Linux
【Azure Redis 缓存】Windows和Linux系统本地安装Redis, 加载dump.rdb中数据以及通过AOF日志文件追加数据
【Azure Redis 缓存】Windows和Linux系统本地安装Redis, 加载dump.rdb中数据以及通过AOF日志文件追加数据
117 1
【Azure Redis 缓存】Windows和Linux系统本地安装Redis, 加载dump.rdb中数据以及通过AOF日志文件追加数据
|
3月前
|
消息中间件 Kafka 开发工具
rsyslog+ELK收集Cisco日志
rsyslog+ELK收集Cisco日志
|
3月前
|
存储 消息中间件 监控
Java日志详解:日志级别,优先级、配置文件、常见日志管理系统ELK、日志收集分析
Java日志详解:日志级别,优先级、配置文件、常见日志管理系统、日志收集分析。日志级别从小到大的关系(优先级从低到高): ALL < TRACE < DEBUG < INFO < WARN < ERROR < FATAL < OFF 低级别的会输出高级别的信息,高级别的不会输出低级别的信息
|
3月前
|
监控 Java Serverless
美团 Flink 大作业部署问题之想在Serverless平台上实时查看Spring Boot应用的日志要怎么操作
美团 Flink 大作业部署问题之想在Serverless平台上实时查看Spring Boot应用的日志要怎么操作