将Node.js项目docker容器化并纳入kubernetes调度编排的实践

简介: 此文档以XXXLogApi-nj项目为例,讲解了将基于Node.js+Express开发的javascript项目容器化的过程。希望以后类似的项目可以以此为参照进行扩展。 XXXLogApi-nj本身是一个微服务化的项目,其作用是为系统单纯的收集相关发布日志,以便能及时的展示给用户。

 

简述

此文档以XXXLogApi-nj项目为例,讲解了将基于Node.js+Express开发的javascript项目容器化的过程。希望以后类似的项目可以以此为参照进行扩展。

XXXLogApi-nj本身是一个微服务化的项目,其作用是为系统单纯的收集相关发布日志,以便能及时的展示给用户。

***这份文档的操作,开始于编码完成之后流程。不涉及GIT和JENKINS的等的操作。

***为保持职业操作,涉及公司信息的地方作了敏感化处理。

***在这个系列中,我同时作了spring boot, beego, django, node.js框架的容器化操作,大同小异,故而只列出第一篇吧。

 

步骤

整个项目的操作过程如下:

一, 开发好业务代码,并且测试通过。

246e668f9f8ca8f9dc7ccd6f8297da3ed6bfeb69

由于javascript为解释型语言,将开发好的目录先移至制作目录下

7340a329f5ee26328b4a292ed7f5e2137c2a1ee8

 

二,下载好基础镜像,为减小镜像,基础镜像为node:9.0.0-alpine,并上传到harbor仓库

55e7dfd18790cfaa45ad4d39e33000a877055970

三,编写dockerfile并生成项目镜像。

Dockerfile文件内容

 

FROM       1.2.3.4/public/node:9.0.0-alpine
MAINTAINER CHENGANG
WORKDIR /data
COPY  prismlogapi-nj/ /data/
EXPOSE 8000
ENTRYPOINT ["node", "index.js", "8000"]

四,编写k8s的deployment文件,并部署。

xxxlognj-deployment.yaml文件内容

f53e7ea39a0bf0f8769e19df865c408a93b8b45e

 

部署命令:

kubectl apply -f xxxlognj-deployment.yaml

 

五,编写k8s的service文件,并部署。

xxxlognj-deployment.yaml文件内容

     bc41f4e4726296f7e60587b90c7c1b6d0f369b51

部署命令:

kubectl apply -f xxxlognj-deployment.yaml

 

六,查看k8s里dashborad服务状态,及验证服务

550e5965d6a903f5ce9b10d780cca14d45fc8d47

c6327320a128974f0311fc02e3c7e6572d6f9aa8


七,补充

 

相关实践学习
深入解析Docker容器化技术
Docker是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化,容器是完全使用沙箱机制,相互之间不会有任何接口。Docker是世界领先的软件容器平台。开发人员利用Docker可以消除协作编码时“在我的机器上可正常工作”的问题。运维人员利用Docker可以在隔离容器中并行运行和管理应用,获得更好的计算密度。企业利用Docker可以构建敏捷的软件交付管道,以更快的速度、更高的安全性和可靠的信誉为Linux和Windows Server应用发布新功能。 在本套课程中,我们将全面的讲解Docker技术栈,从环境安装到容器、镜像操作以及生产环境如何部署开发的微服务应用。本课程由黑马程序员提供。     相关的阿里云产品:容器服务 ACK 容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情: https://www.aliyun.com/product/kubernetes
目录
相关文章
|
2月前
|
人工智能 算法 调度
阿里云ACK托管集群Pro版共享GPU调度操作指南
本文介绍在阿里云ACK托管集群Pro版中,如何通过共享GPU调度实现显存与算力的精细化分配,涵盖前提条件、使用限制、节点池配置及任务部署全流程,提升GPU资源利用率,适用于AI训练与推理场景。
298 1
|
5月前
|
运维 Kubernetes API
解决Kubernetes集群中master节点无法与node节点通信的策略。
这些策略不仅需要执行命令来获取信息,更要深入理解集群组件如何交互,以便进行准确的故障定位与修复。一条一条地排查,并适时回顾配置文件,证书有效性等,通常可以找到问题所在。给出的命令需要根据具体环境的配置进行适当的修改。故障排除往往是一个细致且需求反复验证的过程,但遵循上述策略可以高效定位大部分通信故障的原因。
437 12
|
6月前
|
机器学习/深度学习 Kubernetes 监控
Kubernetes 节点故障自愈方案:结合 Node Problem Detector 与自动化脚本
本文深入探讨了Kubernetes节点故障自愈方案,结合Node Problem Detector(NPD)与自动化脚本,提供技术细节、完整代码示例及实战验证。文章分析了硬件、系统和内核层面的典型故障场景,指出现有监控体系的局限性,并提出基于NPD的实时事件捕获与自动化诊断树的改进方案。通过深度集成NPD、设计自动化修复引擎以及展示内核死锁恢复的实战案例,文章详细说明了自愈流程的实现步骤与性能优势。此外,还提供了生产环境部署指南、高可用架构设计及安全防护措施,并展望了机器学习增强故障预测和混沌工程验证的进阶优化方向。全文约1.2万字,适合希望提升Kubernetes集群稳定性的技术人员阅读。
375 1
|
8月前
|
存储 负载均衡 测试技术
ACK Gateway with Inference Extension:优化多机分布式大模型推理服务实践
本文介绍了如何利用阿里云容器服务ACK推出的ACK Gateway with Inference Extension组件,在Kubernetes环境中为多机分布式部署的LLM推理服务提供智能路由和负载均衡能力。文章以部署和优化QwQ-32B模型为例,详细展示了从环境准备到性能测试的完整实践过程。
|
8月前
|
人工智能 Serverless 调度
突破地域限制,实现算力无限供给 —阿里云ACK One注册集群开启多地域Serverless算力调度
本文介绍了阿里云ACK One注册集群多地域Serverless算力调度解决方案,解决传统数据中心在AI时代面临的算力不足问题。方案通过分钟级接入、100%兼容Kubernetes操作及云上Serverless弹性,实现跨地域弹性算力供给,支持高并发请求与模型快速迭代。文中详细描述了快速接入步骤、指定地域调度及动态调度方法,并提供了相关代码示例。该方案助力企业实现AI推理服务的规模化部署,提升商业落地效率。
|
8月前
|
人工智能 Serverless 调度
突破地域限制,实现算力无限供给 -- 阿里云ACK One注册集群开启多地域Serverless算力调度
传统单地域算力难以支撑AI推理场景的高并发实时响应、突发高流量的要求,阿里云容器服务ACK One注册集群推出多地域Serverless算力调度方案完美解决此问题。
|
9月前
|
人工智能 分布式计算 调度
打破资源边界、告别资源浪费:ACK One 多集群Spark和AI作业调度
ACK One多集群Spark作业调度,可以帮助您在不影响集群中正在运行的在线业务的前提下,打破资源边界,根据各集群实际剩余资源来进行调度,最大化您多集群中闲置资源的利用率。
|
9月前
|
Kubernetes API 网络安全
当node节点kubectl 命令无法连接到 Kubernetes API 服务器
当Node节点上的 `kubectl`无法连接到Kubernetes API服务器时,可以通过以上步骤逐步排查和解决问题。首先确保网络连接正常,验证 `kubeconfig`文件配置正确,检查API服务器和Node节点的状态,最后排除防火墙或网络策略的干扰,并通过重启服务恢复正常连接。通过这些措施,可以有效解决与Kubernetes API服务器通信的常见问题,从而保障集群的正常运行。
703 17
|
9月前
|
存储 人工智能 Kubernetes
ACK Gateway with AI Extension:面向Kubernetes大模型推理的智能路由实践
本文介绍了如何利用阿里云容器服务ACK推出的ACK Gateway with AI Extension组件,在Kubernetes环境中为大语言模型(LLM)推理服务提供智能路由和负载均衡能力。文章以部署和优化QwQ-32B模型为例,详细展示了从环境准备到性能测试的完整实践过程。
|
9月前
|
存储 人工智能 物联网
ACK Gateway with AI Extension:大模型推理的模型灰度实践
本文介绍了如何使用 ACK Gateway with AI Extension 组件在云原生环境中实现大语言模型(LLM)推理服务的灰度发布和流量分发。该组件专为 LLM 推理场景设计,支持四层/七层流量路由,并提供基于模型服务器负载感知的智能负载均衡能力。通过自定义资源(CRD),如 InferencePool 和 InferenceModel,可以灵活配置推理服务的流量策略,包括模型灰度发布和流量镜像。

相关产品

  • 容器服务Kubernetes版
  • 推荐镜像

    更多