【H.264/AVC视频编解码技术详解】十三、熵编码算法(4):H.264使用CAVLC解析宏块的残差数据

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 《H.264/AVC视频编解码技术详解》视频教程已经在“CSDN学院”上线,视频中详述了H.264的背景、标准协议和实现,并通过一个实战工程的形式对H.

《H.264/AVC视频编解码技术详解》视频教程已经在“CSDN学院”上线,视频中详述了H.264的背景、标准协议和实现,并通过一个实战工程的形式对H.264的标准进行解析和实现,欢迎观看!

“纸上得来终觉浅,绝知此事要躬行”,只有自己按照标准文档以代码的形式操作一遍,才能对视频压缩编码标准的思想和方法有足够深刻的理解和体会!

链接地址:H.264/AVC视频编解码技术详解

GitHub代码地址:点击这里


1. H.264的CAVLC解析宏块残差数据的流程

在H.264的解码器在解析宏块的残差数据时,其流程类似于上文提到的CAVLC编码的逆过程。在解析一个宏块残差的时候,首先解析的是残差矩阵的非零系数以及拖尾系数的个数numCoefftrailingOnes。随后是每一个拖尾系数的符号trailingSigns。而后是每一个非拖尾非零系数level的值。然后解析的是最高频非零系数前面的零的总个数totalZeros。最后是每一个非零系数前连续零的个数runBefore

2. 计算CAVLC解析残差的上下文参数

CAVLC编解码过程中的上下文即为当前块值numberCurrent。该值与当前像素块的左侧邻块和上方邻块中非零系数的个数有关。

以尺寸为4×4宏块分割方式为例。当前像素块同左侧和上方邻块的相对位置关系如下图:

对于当前像素块,若其上方和左侧相邻块都不可见(unavailable),那么当前像素块的numberCurrent值为0;若上方或左侧,有且仅有一个相邻块是可见的,那么当前像素块的numberCurrent值即为这个邻块中非零系数的个数numCoeff;若两个邻块都是可见的,那么当前像素块的numberCurrent值为两个邻块numCoeff的四舍五入平均值。

3. 解析非零系数总个数和拖尾系数个数

在CAVLC的解析过程中,非零系数总个数numCoeff和拖尾系数个数trailingOnes两个值是一起解析出来的。解析这两个值依据的是标准文档中的表9-5,如下表即是表9-5的部分:

根据之前解析出来的numberCurrent值,在这个表格中选择一列作为解码数据的参考。此后,从码流中读取相应长度的二进制码流,与表格中的值相比较。当码流与表格中的值匹配时,表格的前两列作为数组的下标,其值即等于希望解析出来的numCoeff和trailingOnes的值。

4. 解析拖尾系数的符号

我们知道变换系数矩阵中最高频的几个绝对值为1的非零系数称之为拖尾系数,其个数范围为0~3个。表示每一个拖尾系数的符号可以一个bit的trailing_ones_sign_flag表示:

  • 当trailing_ones_sign_flag为1,拖尾系数符号为-;
  • 当trailing_ones_sign_flag为0,拖尾系数符号为+;

5. 解析非零系数的幅值

非拖尾的非零系数的幅值通常表示为levels。Levels的解析相对较为复杂。该部分是从最高频开始解析到最低频的非零系数为止。也就是说,levels部分是按频率倒序解析的。

在解析每一个level的时候,每一个值都会按照前缀(prefix)和后缀(suffix)两部分进行解析。

5.1 解析level_prefix部分:

Level_prefix部分即level的前缀部分,该部分的解析较为简单,以伪代码表示如:

leadingZeroBits = −1
for( b = 0; !b; leadingZeroBits++ )
    b = read_bits( 1 )
level_prefix = leadingZeroBits

结合标准文档中的表9-6的表述可知,level的前缀值即为当前码流的下一个比特1之前连续的比特0的个数。

5.2 解析level_suffix部分:

Level_suffix部分的解析比prefix部分复杂,总体上可以分为以下几个步骤:

  1. 解析过程开始之前,初始化suffixLength的值:当非零系数总数numCoeff大于10且拖尾系数个数trailingOnes等于3时,suffixLength初始化为1,否则初始化为0;
  2. 确定levelSuffixSize的值:通常情况下,levelSuffixSize的值等于当前的suffixLength,除了下列两种意外情况:第一,level_prefix的值等于14且suffixLength为0,此时levelSuffixSize设为4;第二,level_prefix大于等于15,此时levelSuffixSize设为level_prefix-3;
  3. 解析level_suffix的值:根据levelSuffixSize的值作为长度,在码流中读取对应的二进制数据作为level_suffix;若levelSuffixSize为0,则level_suffix的值为0;

5.3 由level_prefix和level_suffix部分组合成为levelCode

在解析完成level_prefix和level_suffix之后,将二者组合生成levelCode。计算方法为:levelCode=(Min(15,level_prefix)<

5.3 由levelCode计算level

根据计算得到的levelCode的奇偶性,判断level的符号:

  • 若levelCode是偶数,返回level值为(levelCode + 2)>>1;
  • 若levelCode为奇数,返回level值为(−levelCode−1)>>1;

5.4 更新suffixLength的值

在解析过程中更新suffixLength体现了上下文自适应的思想。

  • 当suffixLength = 0时,suffixLength更新为1;
  • 当suffixLength小于6,且刚刚解析出来的level值大于阈值threshold时,suffixLength自增1;阈值threshold定义为( 3 << ( suffixLength − 1 ) );

6. 解析零系数信息

变换系数矩阵中的零系数也是重要的信息。CAVLC解析的零系数信息主要分两类:

  • totalZeros:每个矩阵一个值,表示最高频非零系数前零系数的总个数;
  • runBefore:每个非零系数一个值,表示该非零系数前连续0的总个数;

解析totalZeros的过程与解析numCoeff和trailingOnes类似,都是从一个二维表格中查找某列表格,在从码流中查找与表格中匹配的值,然后索引便是所求的totalZeros值。解析totalZeros的表格为标准文档中的表9-7。下图是表9-7的局部:

在解析totalZeros的过程中,选择表格的索引值等于当前矩阵块的非零系数个数numCoeff。

解析每个非零系数的runBefore时,也是按照从高频到低频逆序处理的。每次解析的runBefore也是按照类似上述的解析方法,从码流中读取相应长度的码流并与表格中的值比对,匹配后返回索引值作为解析的值。解析runBefore参考标准文档的表9-10:

每次解析出一个runBefore后,totalZeros都要减去该值,然后进行下一次处理。若有n个非零系数,则总共需要解析n-1个runBefore。最低频率的非零系数前的runBefore不需要写在码流中,因为可以通过上述信息推算出。

以上就是解析一个宏块的4×4残差系数矩阵相应语法元素的主要思想和过程。当然实际的解析过程比此要复杂得多,更详细的情况可到CSDN学院的课程:H.264/AVC视频编解码技术详解中观看。

目录
相关文章
|
2月前
|
消息中间件 存储 缓存
十万订单每秒热点数据架构优化实践深度解析
【11月更文挑战第20天】随着互联网技术的飞速发展,电子商务平台在高峰时段需要处理海量订单,这对系统的性能、稳定性和扩展性提出了极高的要求。尤其是在“双十一”、“618”等大型促销活动中,每秒需要处理数万甚至数十万笔订单,这对系统的热点数据处理能力构成了严峻挑战。本文将深入探讨如何优化架构以应对每秒十万订单级别的热点数据处理,从历史背景、功能点、业务场景、底层原理以及使用Java模拟示例等多个维度进行剖析。
74 8
|
7天前
|
JSON 前端开发 搜索推荐
关于商品详情 API 接口 JSON 格式返回数据解析的示例
本文介绍商品详情API接口返回的JSON数据解析。最外层为`product`对象,包含商品基本信息(如id、name、price)、分类信息(category)、图片(images)、属性(attributes)、用户评价(reviews)、库存(stock)和卖家信息(seller)。每个字段详细描述了商品的不同方面,帮助开发者准确提取和展示数据。具体结构和字段含义需结合实际业务需求和API文档理解。
|
5天前
|
存储 分布式计算 Hadoop
基于Java的Hadoop文件处理系统:高效分布式数据解析与存储
本文介绍了如何借鉴Hadoop的设计思想,使用Java实现其核心功能MapReduce,解决海量数据处理问题。通过类比图书馆管理系统,详细解释了Hadoop的两大组件:HDFS(分布式文件系统)和MapReduce(分布式计算模型)。具体实现了单词统计任务,并扩展支持CSV和JSON格式的数据解析。为了提升性能,引入了Combiner减少中间数据传输,以及自定义Partitioner解决数据倾斜问题。最后总结了Hadoop在大数据处理中的重要性,鼓励Java开发者学习Hadoop以拓展技术边界。
28 7
|
19天前
|
存储 算法 安全
基于红黑树的局域网上网行为控制C++ 算法解析
在当今网络环境中,局域网上网行为控制对企业和学校至关重要。本文探讨了一种基于红黑树数据结构的高效算法,用于管理用户的上网行为,如IP地址、上网时长、访问网站类别和流量使用情况。通过红黑树的自平衡特性,确保了高效的查找、插入和删除操作。文中提供了C++代码示例,展示了如何实现该算法,并强调其在网络管理中的应用价值。
|
2月前
|
数据采集 自然语言处理 搜索推荐
基于qwen2.5的长文本解析、数据预测与趋势分析、代码生成能力赋能esg报告分析
Qwen2.5是一款强大的生成式预训练语言模型,擅长自然语言理解和生成,支持长文本解析、数据预测、代码生成等复杂任务。Qwen-Long作为其变体,专为长上下文场景优化,适用于大型文档处理、知识图谱构建等。Qwen2.5在ESG报告解析、多Agent协作、数学模型生成等方面表现出色,提供灵活且高效的解决方案。
253 49
|
1月前
|
机器学习/深度学习 人工智能 算法
深入解析图神经网络:Graph Transformer的算法基础与工程实践
Graph Transformer是一种结合了Transformer自注意力机制与图神经网络(GNNs)特点的神经网络模型,专为处理图结构数据而设计。它通过改进的数据表示方法、自注意力机制、拉普拉斯位置编码、消息传递与聚合机制等核心技术,实现了对图中节点间关系信息的高效处理及长程依赖关系的捕捉,显著提升了图相关任务的性能。本文详细解析了Graph Transformer的技术原理、实现细节及应用场景,并通过图书推荐系统的实例,展示了其在实际问题解决中的强大能力。
219 30
|
23天前
|
存储 监控 算法
企业内网监控系统中基于哈希表的 C# 算法解析
在企业内网监控系统中,哈希表作为一种高效的数据结构,能够快速处理大量网络连接和用户操作记录,确保网络安全与效率。通过C#代码示例展示了如何使用哈希表存储和管理用户的登录时间、访问IP及操作行为等信息,实现快速的查找、插入和删除操作。哈希表的应用显著提升了系统的实时性和准确性,尽管存在哈希冲突等问题,但通过合理设计哈希函数和冲突解决策略,可以确保系统稳定运行,为企业提供有力的安全保障。
|
1月前
|
存储 算法
深入解析PID控制算法:从理论到实践的完整指南
前言 大家好,今天我们介绍一下经典控制理论中的PID控制算法,并着重讲解该算法的编码实现,为实现后续的倒立摆样例内容做准备。 众所周知,掌握了 PID ,就相当于进入了控制工程的大门,也能为更高阶的控制理论学习打下基础。 在很多的自动化控制领域。都会遇到PID控制算法,这种算法具有很好的控制模式,可以让系统具有很好的鲁棒性。 基本介绍 PID 深入理解 (1)闭环控制系统:讲解 PID 之前,我们先解释什么是闭环控制系统。简单说就是一个有输入有输出的系统,输入能影响输出。一般情况下,人们也称输出为反馈,因此也叫闭环反馈控制系统。比如恒温水池,输入就是加热功率,输出就是水温度;比如冷库,
386 15
|
1月前
|
XML JSON JavaScript
HttpGet 请求的响应处理:获取和解析数据
HttpGet 请求的响应处理:获取和解析数据
|
2月前
|
算法 Linux 定位技术
Linux内核中的进程调度算法解析####
【10月更文挑战第29天】 本文深入剖析了Linux操作系统的心脏——内核中至关重要的组成部分之一,即进程调度机制。不同于传统的摘要概述,我们将通过一段引人入胜的故事线来揭开进程调度算法的神秘面纱,展现其背后的精妙设计与复杂逻辑,让读者仿佛跟随一位虚拟的“进程侦探”,一步步探索Linux如何高效、公平地管理众多进程,确保系统资源的最优分配与利用。 ####
82 4

热门文章

最新文章

推荐镜像

更多