工业互联网怎么让大数据产生价值?

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

在经历了长达30年的经济快速发展之后,现在,中国需要一个全新的增长模式。快速的城镇化和工业化让数亿人摆脱了贫困,中国人的人均寿命提升了十年,中国一举成为世界上最大的制造产品出口国和世界第二大经济体。这样的成就令世人瞩目,不过对中国来说,这并不是件难事。中国迄今为止所取得的经济增长都是来源于大量廉价劳动力推动的以出口为导向的制造业快速发展。

然而,强劲的消费需要更快速的工资增长来拉动——因而需要更快速地提高生产力。因此,中国需要加速从低成本生产向高附加值、高科技制造转型。这是一个非常严峻的挑战。大部分新兴市场国家在转型中失败,陷入“中等收入陷阱”无法自拔:在这种境况中,人均收入没有能够向发达国家的高水平靠拢,而是停滞不前。

大数据

1、数字化创新提升竞争力

中国可以通过拥抱“工业互联网”,拥抱这一轮正在改变全球经济的数字创新来应对这个挑战。工业互联网是数字技术和物理技术、大数据与大机器的融合。通过部署电子传感器和云分析,工业互联网将传统工业机器转变为互联资产,开创功能与效率的全新局面。

由数据分析得出的洞察可以实现预测性维护:提前处理潜在故障,避免意外停机。传感器和数据分析构建了一个数字化的网络——工厂车间的所有元素连接在一起,并与供应链和分销渠道相连,提高制造过程的速度和灵活性——GE称之为智慧工厂(Brilliant Factory)。现在3D打印等数字技术使一些新的制造流程成为可能,在提高生产速度的同时,降低了生产成本。

这些数字化的创新能够大幅提升各行各业的效率和生产力,从而提升竞争力,使中国的某些行业在全球范围内确立领导地位。

工业互联网创新还能提升不同层面工人的能力。具有虚拟现实/增强现实能力的便携式和可穿戴设备可以使工人即时访问信息、提供即时培训、更有效地合作以及学习和借鉴其他同事积累的实践经验。

人们常常担心新技术的出现因为提高了自动化水平而减少工作岗位。工业互联网创新的发展方向不同于以往,工业互联网使人与机器之间形成更强大的新型伙伴关系,并提升各个层面工人的能力和生产力。而近年来,中国在提升工人平均技能水平方面也取得了巨大的进展:1982年,年龄在25-29之间的中国人中只有不足1%的人口接受过高中及更高水平的教育;到2010年,这一比例已经超过20%,其中大部分集中在科学和工程学。教育水平的提高使中国的劳动力从这些创新中获得巨大的收益;这也将为中国科学家和工程师的持续创新创造环境,为新型数字化工业技术的增长和传播作出贡献。

在这样的背景下,数字化和智能工业作为一个重大趋势,已不可逆转。很多工业公司已经将数字化视为生存和发展的必要前提。尽管互联网已经改变了消费领域,但这一价值在工业领域还有待释放,在1990到2010年期间,工业生产力的年均增速为4%,但是,在过去的五年里却下降到了1%。如何将数字化转化为价值,这是所有工业公司所需要解答的问题。

中国经济正在经历前所未有的结构化转型,可以预见,服务业态将在整个GDP当中起到非常重要拉动作用。制造业在过往的中国GDP中占很大比例,但在随着结构化转型,未来的制造业将成为制造和服务并举的行业,其中服务所创造的价值贡献甚至会超过制造,从而打造出是高质量、高利润、可持续增长的全新服务业态。

BCG的数据表明,中国经济当今的转型之当中,服务的价值在医疗、航空、能源以及有一些机械制造等行业领域都有体现,在未来,他们都将走上以服务成长拉动增长的路径。所以制造业的转型对于整个GDP的贡献也由此成为重要的话题。

GE本身也是一个制造型企业,但这个百年老店也需要思考如何在新的国际竞争当中寻找突破创新之路。GE的工业互联网在2012年来到中国,而这个战略最早在五年前被提出,因为制造业本身面在寻求新的增长点方面走进了一个困境。在GE超过1000多亿的营收和160亿美元的纯利润当中,75%来自制造。但由于客户市场和全球环境的变化,GE需要找重新思考如何服务于全球各行业的客户。所以GE就提出了工业互联网的概念,从根本上讲,就是要把人与机器,机器与机器之间通过数据无缝连接,通过海量数据找到运营当中的瓶颈,降低成本,提升效率,从而进行整个核心竞争力的转型。

工业互联网同中国工业的智能化在中国的结合恰逢其时,这主要源于三个条件:经过20年的信息化建设,中国积累了很好的基础设施;同时中国目前的制造业的转型上升为国家战略之一,迫切需要一些好的信息化手段、管理理念、创新来推动实现这一目标;最后,人才储备也已经达到一定水平。

2、资产优化与运营优化

在制造业领域,工业互联网在实现工业智能化主要着力于资产优化和运营优化。资产优化是基于一个事实,亦即制造企业的重资产特性。目前重资产企业最重要的关切就是产能过剩的挑战,如何优化资产效率,提升资产的利用率,同时为客户带来一些关键的增值服务,通常也被衍生为装备服务业。其次,是运营优化,中国企业所在的是相比德国提出工业4.0,我们还处在2.0甚至更粗放的阶段。管理粗放,机能低下,信息化基础薄弱等等,都是现在制约制造业发展的重要问题。所以如何使运营优化让我们在岗的工人、管理人员,能够和管理规章制度结合提升我们的效率,这是工业互联网的着眼点,也是中国工业企业转型迫切需要解决的,资产的优化、运营的优化。

目前中国有很多离散型的工厂,例如家电,电子类产品制造商,资产优化、对这些企业而言运营优化有重要的意义。而整个智能化有三个不同的层次:第一,经由传感器驱动的自动化。第二,实现全工厂级别的自动化。第三,包括供应链,供应链上下游的优化。

这一战略也与中国的人口转型相吻合。目前,中国的人口增速降低,老龄化加速。最近出台二胎政策暂时还不会影响到中国的人口发展趋势。与此同时,较低的人口增长速度也意味着劳动力不再像过去几十年那样快速增长。现在,中国的工业面临更加有限的人力资源。因此,为支持快速的经济增长,必须更快速地提高生产力以弥补较慢的劳动力增长。

3、制造服务业与中国工业的转型

回归制造业在全球范围内已经成为很多国家的战略重点,不管是欧洲、美国还是中国。中国制造2025战略通过“互联网+”和工业结合,推进两化深度融合。这也是业界、政府、企业共同面临的一个挑战,也是要深刻研讨的一个话题。

从实施角度,要实现这三方面的优化要经过四个阶段,第一阶段,在没有数据的情况下我们往往有盲人摸象的感受,就像你坐在军中但缺乏前线汇报,这种作战毫无智慧策略可言。所以数据化是非常重要的前提,大部分企业的决策和管理是基于经验,哪怕有一些数据,也是局部不及时的,甚至是错误数据,这都会直接影响到最终结果,所以全局数据的采集是非常关键的。有了数据之后我们下一步希望可视化,所以在GE的智能工厂当中我们推出了数字链和数字双胞胎的概念,通过信息可视化手段通观工厂制造全流程,让我们对生产力、生产资源、生产效率有了解。随之而来的是控制,比对管理目标实施自动化、智能化控制,在流程控制、资源控制、物料控制等等,同时与制造工艺无缝相结合。最后一个环节是我们最期待的环节,也是价值释放的部分,就是实现优化,基于全局数据基础上我们可以实现预测,能够对资源,对于市场,对于客户的需求的预测性的指导下我们进行优化。

这四个阶段就是刚才我们说互联网在智能工厂的一个体现,说起来简单,但是做起来确实是很困难的。纵观中国的产业发展,工业和基础设施还处在由硬件转向软硬件结合的过渡当中,据统计,2014年我国数字化研发设计工具普及率已达54%,关键工序数控化率达到30%。不过较发达国家,中国离互联互通,软硬件结合的工业体系距离还很远。目前,我国高端传感器、智能仪器仪表、高档数控系统、工业应用软件等市场份额不到5%。

目前GE所提供的工业互联网方案,最直接的价值就是帮助客户实现零意外停机时间,目前GE每天监测和分析来自1000万个传感器的5000万项元数据,这些数据涉及资产价值达到万亿美元。基于Predix的APM帮助客户将海量数据转化为准确决策,及时、主动地确保资产安全、帮助设备更好地运行、消耗更少的燃料、更高效地部署服务,并最大限度地减少意外停机时间。 更多APM解决方案和服务将有利于资产所有者和运营商降低维护成本和运营风险,同时提高可靠性。获得“可完全预测的资产”对任何机构的都是终极目标。对于尚不成熟的机构来说,这似乎是一个无法实现的目标。但随着资产运营者逐步接受这一观念,它所带来的诸多益处证明这一投资是值得的,APM将是实现资产预测性的根本基石。

在智慧工厂层面,其价值在于利用大数据、软件、传感器、控制器和机器人提高生产力,从而实现资产和业务优化。智慧工厂的产品拥有四个要素:虚拟制造、传感器启用自动化、工厂优化和供应链优化。GE目前在全球范围内拥有400家工厂。为了改变这些工厂的管理方式并提高生产效率,我们在整个企业共有16个智慧工厂试点。2015年,我们计划把试点数量增加到75个左右。

4、挑战与关注

在整个工业互联网的实施过程中,挑战是毋庸置疑的,总结而言,我们在有四个需要非常关注的:

安全性。制造企业进行转型不管走的是什么路径,目标是一致的,但是安全是非常重要的。传统的信息化的安全不足以覆盖到制造领域的安全,GE工业互联网上倡导的安全,除了IT的安全还有OT的安全,就是工业技术的安全。

基础设施:基础设施从数据中心到网络,到大数据分析,到云计算等等基础设施的部署。

复合性人才。过去中国的20年,无论是信息化还是工业化过程中培养了很多人才,但是都过于单一化。工业化和信息化的深度融合之后,我们需要更多的是复合性人才,对工业材料了解,对信息业了解的,当然对我们管理也提出了很高的要求。因为技术是服务于业务的,刚才提到的最终是希望驱动企业,使它具备智能管理和持续创新的能力,从而提高它的核心竞争力。所以对于企业的经营者来讲,也是一个挑战,就是我们的管理技能如何和信息化技术,和先进材料技术多方面融合,给企业制定一个好的战略。

业务模式的改变。技术的引入也会促使我们从上游产品设计到生产制造,到供应链,一直到市场服务形成一个全闭环的流程。每一个环节都会对我们传统的运营模式和业务模式带来冲击,互联网给消费领域带来的改变每个人都感受到了,工业领域也是如此。比如说众包在产品设计阶段,现在已经被广泛的使用了,我相信将来在供应链,在市场服务的时候如何更精准,更和消费者互动,这些都会对我们已有的模式带来很大的改变,我们参与的很多项目当中都是着眼于这方面的改变。 


本文作者:佚名

来源:51CTO

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
数据采集 机器学习/深度学习 人工智能
大数据分析案例-用RFM模型对客户价值分析(聚类)
大数据分析案例-用RFM模型对客户价值分析(聚类)
1325 0
大数据分析案例-用RFM模型对客户价值分析(聚类)
|
3月前
|
存储 大数据 数据挖掘
【数据新纪元】Apache Doris:重塑实时分析性能,解锁大数据处理新速度,引爆数据价值潜能!
【9月更文挑战第5天】Apache Doris以其卓越的性能、灵活的架构和高效的数据处理能力,正在重塑实时分析的性能极限,解锁大数据处理的新速度,引爆数据价值的无限潜能。在未来的发展中,我们有理由相信Apache Doris将继续引领数据处理的潮流,为企业提供更快速、更准确、更智能的数据洞察和决策支持。让我们携手并进,共同探索数据新纪元的无限可能!
156 11
|
4月前
|
机器学习/深度学习 人工智能 分布式计算
理解并利用大数据的力量:解锁数据背后的价值
【8月更文挑战第7天】大数据已成为推动社会进步和经济发展的重要力量。通过理解并利用大数据的力量,企业可以解锁数据背后的价值,优化业务流程、提升决策效率和创新能力。然而,大数据应用也面临着诸多挑战和风险,需要企业不断学习和实践以应对。相信在未来的发展中,大数据将为我们带来更多的惊喜和机遇。
|
5月前
|
存储 算法 数据可视化
云上大数据分析平台:解锁数据价值,驱动智能决策新篇章
实时性与流式处理:随着实时数据分析需求的增加,云上大数据分析平台将更加注重实时性和流式处理能力的建设。通过优化计算引擎和存储架构等技术手段,平台将能够实现对数据流的高效处理和分析,为企业提供实时决策支持。通过优化计算引擎和存储架构等技术手段,平台将能够实现对数据流的高效处理和分析,为企业提供实时决策支持。
760 8
|
7月前
|
存储 分布式计算 算法
大数据处理:挖掘价值之道
大数据处理:挖掘价值之道
|
7月前
|
存储 数据可视化 大数据
大数据分析与处理:探索数据的深层价值
大数据分析与处理:探索数据的深层价值
107 2
|
7月前
|
存储 数据采集 机器学习/深度学习
大数据分析:挖掘数据价值的技术和方法
在数字化时代,大数据已经成为企业和科研机构的重要资源之一。然而,对于海量的数据如何进行分析和挖掘却是一个巨大的挑战。本文将介绍大数据分析的基本概念、技术和方法,帮助读者了解如何利用现代技术和工具,挖掘数据中蕴藏的价值。
687 0
|
机器学习/深度学习 人工智能 Cloud Native
【大数据趋势白皮书下载】IDC: 发挥数据智能价值,推动企业数字化创新
IDC认为,从提升企业中长期发展质量、降低综合投入成本的角度出发,大数据技术领域将呈现出两个显著趋势:一体化和融合化。企业应以战略和顶层设计为先导,用体系化的思维全面构建大数据能力架构,避免形成新的数据、业务和能力孤岛。 【下载地址见文末】
【大数据趋势白皮书下载】IDC: 发挥数据智能价值,推动企业数字化创新
|
数据采集 机器学习/深度学习 算法
大数据分析案例-基于RFM模型对电商客户价值分析(聚类)
大数据分析案例-基于RFM模型对电商客户价值分析(聚类)
1084 0
大数据分析案例-基于RFM模型对电商客户价值分析(聚类)
|
大数据