《并行计算的编程模型》一2.4.5 寄存器–内存与远程memset操作

简介: 本节书摘来华章计算机《并行计算的编程模型》一书中的第2章 ,第2.4.5节, [(美)帕万·巴拉吉(Pavan Balaji)编著;张云泉等译,更多章节内容可以访问云栖社区“华章计算机”公众号查看。

2.4.5 寄存器–内存与远程memset操作

GASNet的扩展API有一些奇怪的接口,某些情况下可能非常有用。除了数据的批量和单个操作之外,GASNet还提供了基于值的操作用于移动来自远程存储器适合寄存器(最多4或8字节,与平台有关)的数据。Put支持阻塞与非阻塞变体(带有显式和隐式句柄)。Get有一个阻塞变体和一个具有不同句柄类型(gasnet_valget_handle_t)的显式句柄变量。同时GASNet API还提供了相应的函数进行同步操作并返回值:gasnet_wait_syncnb_valget。
GASNet支持具有相同完成语义(如Put)的阻塞与非阻塞(带有显式和隐式句柄)的远程memset函数调用。这些函数调用没有构建被初始化为所期望常量值的源缓冲区的时间或空间开销。

相关文章
|
缓存 安全 Java
Java并发编程进阶:深入理解Java内存模型
Java并发编程进阶:深入理解Java内存模型
121 0
|
4月前
|
Java 大数据 Go
从混沌到秩序:Java共享内存模型如何通过显式约束驯服并发?
并发编程旨在混乱中建立秩序。本文对比Java共享内存模型与Golang消息传递模型,剖析显式同步与隐式因果的哲学差异,揭示happens-before等机制如何保障内存可见性与数据一致性,展现两大范式的深层分野。(238字)
139 4
|
9月前
|
存储 缓存 Java
【高薪程序员必看】万字长文拆解Java并发编程!(5):深入理解JMM:Java内存模型的三大特性与volatile底层原理
JMM,Java Memory Model,Java内存模型,定义了主内存,工作内存,确保Java在不同平台上的正确运行主内存Main Memory:所有线程共享的内存区域,所有的变量都存储在主存中工作内存Working Memory:每个线程拥有自己的工作内存,用于保存变量的副本.线程执行过程中先将主内存中的变量读到工作内存中,对变量进行操作之后再将变量写入主内存,jvm概念说明主内存所有线程共享的内存区域,存储原始变量(堆内存中的对象实例和静态变量)工作内存。
290 0
|
6月前
|
人工智能 边缘计算 自然语言处理
普通电脑也能跑AI:10个8GB内存的小型本地LLM模型推荐
随着模型量化技术的发展,大语言模型(LLM)如今可在低配置设备上高效运行。本文介绍本地部署LLM的核心技术、主流工具及十大轻量级模型,探讨如何在8GB内存环境下实现高性能AI推理,涵盖数据隐私、成本控制与部署灵活性等优势。
3864 0
普通电脑也能跑AI:10个8GB内存的小型本地LLM模型推荐
|
程序员 编译器 C++
【C++核心】C++内存分区模型分析
这篇文章详细解释了C++程序执行时内存的四个区域:代码区、全局区、栈区和堆区,以及如何在这些区域中分配和释放内存。
232 2
|
11月前
|
存储 人工智能 编解码
TripoSF:3D建模内存暴降80%!VAST AI新一代模型细节狂飙82%
TripoSF 是 VAST AI 推出的新一代 3D 基础模型,采用创新的 SparseFlex 表示方法,支持 1024³ 高分辨率建模,内存占用降低 82%,在细节捕捉和复杂结构处理上表现优异。
364 10
TripoSF:3D建模内存暴降80%!VAST AI新一代模型细节狂飙82%
|
人工智能 物联网 C语言
SVDQuant:MIT 推出的扩散模型后训练的量化技术,能够将模型的权重和激活值量化至4位,减少内存占用并加速推理过程
SVDQuant是由MIT研究团队推出的扩散模型后训练量化技术,通过将模型的权重和激活值量化至4位,显著减少了内存占用并加速了推理过程。该技术引入了高精度的低秩分支来吸收量化过程中的异常值,支持多种架构,并能无缝集成低秩适配器(LoRAs),为资源受限设备上的大型扩散模型部署提供了有效的解决方案。
891 5
SVDQuant:MIT 推出的扩散模型后训练的量化技术,能够将模型的权重和激活值量化至4位,减少内存占用并加速推理过程
|
传感器 人工智能 物联网
C 语言在计算机科学中尤其在硬件交互方面占据重要地位。本文探讨了 C 语言与硬件交互的主要方法,包括直接访问硬件寄存器、中断处理、I/O 端口操作、内存映射 I/O 和设备驱动程序开发
C 语言在计算机科学中尤其在硬件交互方面占据重要地位。本文探讨了 C 语言与硬件交互的主要方法,包括直接访问硬件寄存器、中断处理、I/O 端口操作、内存映射 I/O 和设备驱动程序开发,以及面临的挑战和未来趋势,旨在帮助读者深入了解并掌握这些关键技术。
390 6
|
机器学习/深度学习 算法 物联网
大模型进阶微调篇(一):以定制化3B模型为例,各种微调方法对比-选LoRA还是PPO,所需显存内存资源为多少?
本文介绍了两种大模型微调方法——LoRA(低秩适应)和PPO(近端策略优化)。LoRA通过引入低秩矩阵微调部分权重,适合资源受限环境,具有资源节省和训练速度快的优势,适用于监督学习和简单交互场景。PPO基于策略优化,适合需要用户交互反馈的场景,能够适应复杂反馈并动态调整策略,适用于强化学习和复杂用户交互。文章还对比了两者的资源消耗和适用数据规模,帮助读者根据具体需求选择最合适的微调策略。
4454 5
|
监控 算法 Java
深入理解Java中的垃圾回收机制在Java编程中,垃圾回收(Garbage Collection, GC)是一个核心概念,它自动管理内存,帮助开发者避免内存泄漏和溢出问题。本文将探讨Java中的垃圾回收机制,包括其基本原理、不同类型的垃圾收集器以及如何调优垃圾回收性能。通过深入浅出的方式,让读者对Java的垃圾回收有一个全面的认识。
本文详细介绍了Java中的垃圾回收机制,从基本原理到不同类型垃圾收集器的工作原理,再到实际调优策略。通过通俗易懂的语言和条理清晰的解释,帮助读者更好地理解和应用Java的垃圾回收技术,从而编写出更高效、稳定的Java应用程序。