机器学习走入数据中心管理 两者将擦出什么样的火花?

简介:

对于一些出色的思考者和企业来说,他们正在将机器学习运用到实际应用中。尽管人们对人工智能的相关理论研究的时间已经有近半个世纪,但是,随着机器学习进入数据中心领域,最终会让计算机科学变得更加本土化。

复杂的环境中往往存放了数据资料,为什么不运用计算的力量来提升计算能力呢?这似乎预示着概念时代即将到来。

Forrester研究公司首席分析师Michele Goetz说:“将机器学习运用到数据中心管理中,最终一定会为您带来可喜的成果。”

数据中心:一种理想的环境

Vantage Data Centers(加利福尼亚州的一家数据中心服务供应商)的首席运营官Christopher Yetman认为,对于机器学习来说,数据中心是种非常理想的环境,因为在其中可以获取到许多数据。在建筑层和物理层中存在传感器数据,在服务器和网络设备的配合下会产生大量操作信息。我们曾经使用过这些数据,但是却没有挖掘到其最大的潜能。

Yetman说,当然还有一种传感器可以产生关于气压、适度、温度、电源电压等数据,最终将这些信息传递到可编程控制器中。然后这些数据会触发一些特定阀值。例如,当一间屋子温度开始上升时就会触发温度阀值。然而,大多数情况下还需要一个反应的过程,数据中心管理工具往往会参考处理器、存储序列或者网络中的一些活动再作判断。

如今,人们建立了智能物理传感器,应用价格合理的Raspberry Pi技术,可以与以太网和控制器进行沟通对话。换句话说,获得的可用数据越多,数据中心就会拥有越多的机器学习案例。

Yetman说:“如果你向机器学习系统中传入许多信息,那么它会自动截取一些东西,例如服务器使用模式,或许还会将其与温度联系到一起。”他补充说道,机器学习系统最终会注意到湿度上升和西风等信息,而这些将会导致温度的上升,还会改变数据中心预期行为。

他说:“我想跟大家分享另外一个案例。例如一家社交媒体公司的用户在前一天晚上表现更加活跃,机器学习便会注意到这些,会自动根据需求安排更多的在线机器,以便保持较短的响应时间。”机器学习能够根据综合感应一些信息,如了解机器可以产生多少热量以及提前加大冷却。

数据中心中有更多机器学习案例

引入数据中心的机器学习系统并不了解数据间的连带关系,但是最终通过一些运作流程便会知晓其中关联。例如,Virtual Power Systems(简称VPS)是一家坐落于加利福尼亚州的数据中心软件定义基础设施供应商,可以提供智能电力补给,并应用机器学习系统来决定其管理方式。该软件可以与服务器以及电力系统进行沟通交流,还可以判断需求的变动。

Yetman说:“为了将电源转移到另外一个机架从而达到运行峰值,我们可以使部分机架运行在电池中,根据这个原理,VPS可以安排机架从另外一个机架中借用电源。”

谷歌的数据中心工程师兼研究员Jim Gao在其研究报告《Machine Learning Applications for Data Center Optimization》中这样写道,数据中心是一个多种机械、电气和控制系统产生相互作用的复杂系统。

“操作配置和非线性关系的相对数量使得我们很难理解和优化能源效率,”他说。为了解决这个问题,谷歌建立了一种机器学习系统以更好地调整操作、节约更多能源。

同样地,Ireland的研究员们也曾在机器学习系统中投入精力,并直接将该系统应用到数据中心管理和操作中。Shane Nolan说:“在分析和云计算中,我们看到了两大技术领域自我管理、自我配置、自我修复以及自我保护系统在数据中心中的出色表现。”Shane Nolan是Industrial Development Agency技术、营销和商务部的高级副总裁,Industrial Development Agency属于政府机构,主要从事对外开发投资工作。

Nolan补充道,Facebook、苹果、谷歌和亚马逊这样的领军企业使爱尔兰变成欧洲数据中心业务发展最快的地区之一。我们发现,数据中心的设施和系统管理的提升是非常有必要和重要的。

机器学习会取代其他技术系统吗?

Yetman的理论是,软件取代了硬件,从这种观点来看,单独硬件上支持的功能都可以通过软件实现。他认为,容错计算机硬件供应商的衰落源于新兴技术的崛起,例如虚拟化技术。该技术花费较低的成本就可以实现相同的功能效果。他预测,同样地,机器学习系统也会取代软件。

Yetman说:“软件根据人类习惯和思维方式,试图使每套解决方案都能够解决一类问题。但是,人类是无法预测到每一个解决方案的,并且他们所创建的软件也是相对固定的。这就是机器学习可以取代软件的原因,它会寻找到最佳的解决方式。”

其中一类经典机器学习案例的功能就是可以同时关联多个日志。或许我们不会太了解两个不同日志之间的关系,简单查询或者先前存在的报告格式是不可能有什么新的内容了。然而,引入机器学习系统后会发现其中某些关联性,能够产生前所未有的洞察力。

但是,除了所表现出来的特殊功能外,数据中心管理中的机器学习案例还处在发展阶段,与最初的设计还是有许多不同之处。

Yetman说:“多数先进的技术都先出现在谷歌这样的领军企业。因为投资回报比较快,因此他们才乐意创建机器学习系统。”


本文作者:Alan R. Earls

来源:51CTO

相关文章
|
4月前
|
机器学习/深度学习 数据采集 运维
智能运维:利用机器学习优化IT基础设施管理
在数字化浪潮的推动下,企业对IT系统的依赖程度日益加深。传统的运维模式已经难以满足现代业务的需求,尤其是在处理海量数据和复杂系统时显得力不从心。本文将探讨如何通过机器学习技术,实现智能化的运维管理,从而提升效率、减少故障时间,并预测潜在问题,保障业务的连续性和稳定性。 【7月更文挑战第27天】
63 10
|
4月前
|
机器学习/深度学习 弹性计算 运维
智能化运维的浪潮之巅:机器学习在IT管理中的应用与挑战
本文将深入探讨机器学习技术如何革新传统的IT运维模式,通过实际案例分析其在故障预测、自动化处理以及安全防护等方面的应用成效,并讨论实施过程中可能遇到的技术与管理挑战。
|
4月前
|
机器学习/深度学习 运维 监控
智能化运维的崛起:机器学习在IT管理中的实践与挑战
本文深入探讨了智能化运维领域,特别是机器学习技术在IT管理中的应用。文章首先介绍了智能化运维的概念及其重要性,随后详细阐述了机器学习在故障预测、自动化响应和系统优化中的作用。同时,文章也指出了实施智能化运维时可能遇到的技术挑战和数据治理问题,并提出了相应的解决策略。最后,通过具体案例分析,展示了机器学习技术如何在实际运维中提高系统稳定性和效率。
|
4月前
|
机器学习/深度学习 边缘计算 运维
智能化运维的崛起:机器学习在IT基础设施管理中的应用
随着企业对IT基础设施的依赖日益加深,传统的运维模式已难以满足现代业务的需求。本文将探讨智能化运维的概念,分析机器学习技术如何革新IT基础设施的管理方式,提升运维效率,并预测其在未来运维领域的发展趋势。通过具体案例,本文旨在展示智能化运维的实践价值及其对企业数字化转型的推动作用。
60 0
|
3月前
|
机器学习/深度学习 存储 算法
利用机器学习优化数据中心的能源效率
【8月更文挑战第30天】 在信息技术不断进步的今天,数据中心作为支撑云计算、大数据分析和人工智能等技术的核心基础设施,其能源效率已成为衡量运营成本和环境可持续性的关键指标。本文旨在探讨如何通过机器学习技术对数据中心进行能源效率优化。首先,文中介绍了数据中心能耗的主要组成部分及其影响因素。其次,详细阐述了机器学习模型在预测和管理数据中心能源消耗方面的应用,并通过案例分析展示了机器学习算法在实际环境中的效果。最后,文章讨论了机器学习优化策略实施的潜在挑战与未来发展方向。
|
3月前
|
机器学习/深度学习 存储 监控
利用机器学习技术优化数据中心能效
【7月更文挑战第36天】在数据中心管理和运营中,能源效率已成为关键性能指标之一。随着能源成本的不断上升以及环境保护意识的增强,开发智能化、自动化的解决方案以降低能耗和提高能源利用率变得尤为重要。本文探讨了如何应用机器学习技术对数据中心的能源消耗进行建模、预测和优化,提出了一个基于机器学习的框架来动态调整资源分配和工作负载管理,以达到节能的目的。通过实验验证,该框架能够有效减少数据中心的能耗,同时保持服务质量。
|
4月前
|
机器学习/深度学习 运维 监控
智能化运维:利用机器学习优化IT基础设施管理
【7月更文挑战第28天】在数字化时代,智能化运维成为企业提升效率、降低成本的关键。本文将探讨如何通过机器学习技术,实现对IT基础设施的智能监控与自动化管理,包括预测性维护、异常检测和性能优化等策略,旨在为读者提供一套实用的智能化运维解决方案。
|
4月前
|
机器学习/深度学习 人工智能 运维
智能化运维:如何利用AI和机器学习优化IT基础设施管理
随着技术的快速发展,传统的运维方法已无法满足现代企业的需求。本文将深入探讨如何通过人工智能(AI)和机器学习(ML)来革新IT基础设施的管理方式,提升效率并降低成本。我们将从实际案例出发,分析AI与ML在智能监控、故障预测、自动化修复等方面的应用,并讨论实施这些技术时面临的挑战与解决策略。
70 1
|
4月前
|
机器学习/深度学习 运维 监控
智能化运维:利用机器学习优化IT基础设施管理
【7月更文挑战第23天】在数字化时代的浪潮中,IT基础设施的复杂性日益增加,传统的运维方法已难以满足现代企业的需求。本文将探讨如何通过机器学习技术,实现智能化运维,提升IT基础设施的管理效率和响应速度。我们将从智能监控、自动化故障处理、预测性维护三个方面展开讨论,并结合实际案例,展示智能化运维在实际应用中的巨大潜力。
|
4月前
|
机器学习/深度学习 存储 运维
智能化运维:利用机器学习优化IT基础设施管理
随着企业对高效、自动化IT基础设施管理的需求日益增长,智能化运维已成为技术发展的前沿。本文将探讨如何通过机器学习算法预测系统故障、优化资源分配并实现自动化的故障恢复,从而提升运维效率和系统稳定性。我们将分析机器学习在智能运维中的应用案例,并讨论实施过程中的挑战与策略。 【7月更文挑战第15天】
56 8
下一篇
无影云桌面