帮你通过AWS的Lambda和API Gateway走向Serverless

本文涉及的产品
函数计算FC,每月15万CU 3个月
Serverless 应用引擎免费试用套餐包,4320000 CU,有效期3个月
简介:

近来,在计算领域出现了很多关于 serverless 的讨论。serverless 是一个概念,它允许你提供代码或可执行程序给某个服务,由服务来为你执行它们,而你无需自己管理服务器。这就是所谓的执行即服务execution-as-a-service,它带来了很多机会,同时也遇到了它独有的挑战。

简短回忆下计算领域的发展

早期,出现了……好吧,这有点复杂。很早的时候,出现了机械计算机,后来又有了埃尼阿克 ENIAC(Electronic Numerical Integrator And Computer,很早的电子计算机),但是都没有规模生产。直到大型机出现后,计算领域才快速发展。

  • 上世纪 50 年代 - 大型机
  • 上世纪 60 年代 - 微型机
  • 1994 - 机架服务器
  • 2001 - 刀片服务器
  • 本世纪初 - 虚拟服务器
  • 2006 - 服务器云化
  • 2013 - 容器化
  • 2014 - serverless(计算资源服务化)

这些日期是大概的发布或者流行日期,无需和我争论时间的准确性。计算领域的演进趋势是执行的功能单元越来越小。每一次演进通常都意味着运维负担的减小和运维灵活性的增加。

发展前景

喔,Serverless!但是,serverless 能给我们带来什么好处? 我们将面临什么挑战呢?

未执行代码时无需付费。我认为,这是个巨大的卖点。当无人访问你的站点或用你的 API 时,你无需付钱。没有持续支出的基础设施成本,仅仅支付你需要的部分。换句话说,这履行了云计算的承诺:“仅仅支付你真正用的资源”。

无需维护服务器,也无需考虑服务器安全。服务器的维护和安全将由你的服务提供商来处理(当然,你也可以架设自己的 serverless 主机,只是这似乎是在向错误的方向前进)。由于你的执行时间也是受限的,安全补丁也被简化了,因为完全不需要重启。这些都应该由你的服务提供商无缝地处理。

无限的可扩展性。这是又一个大的好处。假设你又开发了一个 Pokemon Go, 与其频繁地把站点下线维护升级,不如用 serverless 来不断地扩展。当然,这也是个双刃剑,大量的账单也会随之而来。如果你的业务的利润强依赖于站点上线率的话,serverless 确实能帮上忙。

强制的微服务架构。这也有两面性,一方面,微服务似乎是一种好的构建灵活可扩展的、容错的架构的方式。另一方面,如果你的业务没有按照这种方式设计,你将很难在已有的架构中引入 serverless。

但是现在你被限制在他们的平台上

受限的环境。你只能用服务提供商提供的环境,你想在 Rust 中用 serverless?你可能不会太幸运。

受限的预装包。你只有提供商预装的包。但是你或许能够提供你自己的包。

受限的执行时间。你的 Function 只可以运行这么长时间。如果你必须处理 1TB 的文件,你可能需要有一个解决办法或者用其他方案。

强制的微服务架构。参考上面的描述。

受限的监视和诊断能力。例如,你的代码在干什么? 在 serverless 中,基本不可能在调试器中设置断点和跟踪流程。你仍然可以像往常一样记录日志并发出统计度量,但是这带来的帮助很有限,无法定位在 serverless 环境中发生的难点问题。

竞争领域

自从 2014 年出现 AWS Lambda 以后,serverless 的提供商已经增加了一些。下面是一些主流的服务提供商:

  • AWS Lambda - 起步最早的
  • OpenWhisk - 在 IBM 的 Bluemix 云上可用
  • Google Cloud Functions
  • Azure Functions

这些平台都有它们的相对优势和劣势(例如,Azure 支持 C#,或者紧密集成在其他提供商的平台上)。这里面最大的玩家是 AWS。

通过 AWS 的 Lambda 和 API Gateway 构建你的第一个 API

我们来试一试 serverless。我们将用 AWS Lambda 和 API Gateway 来构建一个能返回 Jimmy 所说的“Guru Meditations”的 API。

所有代码在 GitHub 上可以找到。

API文档:


  
  
  1. POST / 
  2.     "status""success"
  3.     "meditation""did u mention banana cognac shower" 

怎样组织工程文件

文件结构树:


  
  
  1. ├── LICENSE 
  2. ├── README.md 
  3. ├── server 
  4. │   ├── __init__.py 
  5. │   ├── meditate.py 
  6. │   └── swagger.json 
  7. ├── setup.py 
  8. ├── tests 
  9. │   └── test_server 
  10. │       └── test_meditate.py 
  11. └── tools 
  12.     ├── deploy.py 
  13.     ├── serve.py 
  14.     ├── serve.sh 
  15.     ├── setup.sh 
  16.     └── zip.sh 

AWS 中的信息(想了解这里究竟在做什么的详细信息,可查看源码 tools/deploy.py)。

  • API。实际构建的对象。它在 AWS 中表示为一个单独的对象。
  • 执行角色。在 AWS 中,每个 Function 作为一个单独的角色执行。在这里就是 meditations。
  • 角色策略。每个 Function 作为一个角色执行,每个角色需要权限来干活。我们的 Lambda Function 不干太多活,故我们只添加一些日志记录权限。
  • Lambda Function。运行我们的代码的地方。
  • Swagger。 Swagger 是 API 的规范。API Gateway 支持解析 swagger 的定义来为 API 配置大部分资源。
  • 部署。API Gateway 提供部署的概念。我们只需要为我们的 API 用一个就行(例如,所有的都用生产或者 yolo等),但是得知道它们是存在的,并且对于真正的产品级服务,你可能想用开发和暂存环境。
  • 监控。在我们的业务崩溃的情况下(或者因为使用产生大量账单时),我们想以云告警查看方式为这些错误和费用添加一些监控。注意你应该修改 tools/deploy.py 来正确地设置你的 email。

代码

Lambda Function 将从一个硬编码列表中随机选择一个并返回 guru meditations,非常简单:


  
  
  1. import logging 
  2. import random 
  3.  
  4. logger = logging.getLogger() 
  5. logger.setLevel(logging.INFO) 
  6.  
  7. def handler(event, context): 
  8.  
  9.     logger.info(u"received request with id '{}'".format(context.aws_request_id)) 
  10.  
  11.     meditations = [ 
  12.     "off to a regex/"
  13.     "the count of machines abides"
  14.     "you wouldn't fax a bat"
  15.     "HAZARDOUS CHEMICALS + RKELLY"
  16.     "your solution requires a blood eagle"
  17.     "testing is broken because I'm lazy"
  18.     "did u mention banana cognac shower"
  19.     ]
  20.  
  21.     meditation = random.choice(meditations) 
  22.  
  23.     return { 
  24.         "status""success"
  25.         "meditation": meditation, 
  26.     } 

deploy.py 脚本

这个脚本相当长,我没法贴在这里。它基本只是遍历上述“AWS 中的信息”下的项目,确保每项都存在。

我们来部署这个脚本

只需运行 ./tools/deploy.py。

基本完成了。不过似乎在权限申请上有些问题,由于 API Gateway 没有权限去执行你的 Function,所以你的 Lambda Function 将不能执行,报错应该是“Execution failed due to configuration error: Invalid permissions on Lambda function”。我不知道怎么用 botocore 添加权限。你可以通过 AWS console 来解决这个问题,找到你的 API, 进到 /POST 端点,进到“integration request”,点击“Lambda Function”旁边的编辑图标,修改它,然后保存。此时将弹出一个窗口提示“You are about to give API Gateway permission to invoke your Lambda function”, 点击“OK”。

当你完成后,记录下 ./tools/deploy.py 打印出的 URL,像下面这样调用它,然后查看你的新 API 的行为:


  
  
  1. $ curl -X POST https://a1b2c3d4.execute-api.us-east-1.amazonaws.com/prod/ 
  2. {"status""success""meditation""the count of machines abides"

本地运行

不幸的是,AWS Lambda 没有好的方法能在本地运行你的代码。在这个例子里,我们将用一个简单的 flask 服务器来在本地托管合适的端点,并调用 handler 函数。


  
  
  1. from __future__ import absolute_import 
  2.  
  3. from flask import Flask, jsonify 
  4.  
  5. from server.meditate import handler 
  6.  
  7. app = Flask(__name__) 
  8.  
  9. @app.route("/", methods=["POST"]) 
  10. def index():
  11.  
  12.     class FakeContext(object): 
  13.         aws_request_id = "XXX" 
  14.  
  15.     return jsonify(**handler(None, FakeContext())) 
  16.  
  17. app.run(host="0.0.0.0"

你可以在仓库中用 ./tools/serve.sh 运行它,像这样调用:


  
  
  1. $ curl -X POST http://localhost:5000/ 
  2.     "meditation""your solution requires a blood eagle"
  3.     "status""success" 

测试

你总是应该测试你的代码。我们的测试方法是导入并运行我们的 handler 函数。这是最基本的 python 测试方法:


  
  
  1. from __future__ import absolute_import 
  2.  
  3. import unittest 
  4.  
  5. from server.meditate import handler 
  6.  
  7. class SubmitTestCase(unittest.TestCase): 
  8.  
  9. def test_submit(self): 
  10.  
  11. class FakeContext(object): 
  12.  
  13. aws_request_id = "XXX" 
  14.  
  15. response = handler(None, FakeContext()) 
  16.  
  17. self.assertEquals(response["status"], "success" 
  18. self.assertTrue("meditation" in response) 

你可以在仓库里通过 nose2 运行这个测试代码。

更多前景

  • 和 AWS 服务的无缝集成。通过 boto,你可以完美地轻易连接到任何其他的 AWS 服务。你可以轻易地让你的执行角色用 IAM 访问这些服务。你可以从 S3 取文件或放文件到 S3,连接到 Dynamo DB,调用其他 Lambda Function,等等。
  • 访问数据库。你也可以轻易地访问远程数据库。在你的 Lambda handler 模块的最上面连接数据库,并在handler 函数中执行查询。你很可能必须从它的安装位置上传相关的包内容才能使它正常工作。可能你也需要静态编译某些库。
  • 调用其他 webservices。API Gateway 也是一种把 webservices 的输出从一个格式转换成另一个格式的方法。你可以充分利用这个特点通过不同的 webservices 来代理调用,或者当业务变更时提供后向兼容能力。




作者:Ryan Kelly
来源:51CTO
相关实践学习
【文生图】一键部署Stable Diffusion基于函数计算
本实验教你如何在函数计算FC上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。函数计算提供一定的免费额度供用户使用。本实验答疑钉钉群:29290019867
建立 Serverless 思维
本课程包括: Serverless 应用引擎的概念, 为开发者带来的实际价值, 以及让您了解常见的 Serverless 架构模式
目录
相关文章
|
5月前
|
缓存 Serverless API
函数计算产品使用问题之怎么通过API使用SD
函数计算产品作为一种事件驱动的全托管计算服务,让用户能够专注于业务逻辑的编写,而无需关心底层服务器的管理与运维。你可以有效地利用函数计算产品来支撑各类应用场景,从简单的数据处理到复杂的业务逻辑,实现快速、高效、低成本的云上部署与运维。以下是一些关于使用函数计算产品的合集和要点,帮助你更好地理解和应用这一服务。
|
5月前
|
消息中间件 运维 Serverless
函数计算产品使用问题之如何部署Stable Diffusion Serverless API
函数计算产品作为一种事件驱动的全托管计算服务,让用户能够专注于业务逻辑的编写,而无需关心底层服务器的管理与运维。你可以有效地利用函数计算产品来支撑各类应用场景,从简单的数据处理到复杂的业务逻辑,实现快速、高效、低成本的云上部署与运维。以下是一些关于使用函数计算产品的合集和要点,帮助你更好地理解和应用这一服务。
|
1月前
|
Java API 开发者
Java中的Lambda表达式与Stream API的协同作用
在本文中,我们将探讨Java 8引入的Lambda表达式和Stream API如何改变我们处理集合和数组的方式。Lambda表达式提供了一种简洁的方法来表达代码块,而Stream API则允许我们对数据流进行高级操作,如过滤、映射和归约。通过结合使用这两种技术,我们可以以声明式的方式编写更简洁、更易于理解和维护的代码。本文将介绍Lambda表达式和Stream API的基本概念,并通过示例展示它们在实际项目中的应用。
|
2月前
|
安全 Java API
Java中的Lambda表达式与Stream API的高效结合####
探索Java编程中Lambda表达式与Stream API如何携手并进,提升数据处理效率,实现代码简洁性与功能性的双重飞跃。 ####
33 0
|
2月前
|
Java API 数据处理
探索Java中的Lambda表达式与Stream API
【10月更文挑战第22天】 在Java编程中,Lambda表达式和Stream API是两个强大的功能,它们极大地简化了代码的编写和提高了开发效率。本文将深入探讨这两个概念的基本用法、优势以及在实际项目中的应用案例,帮助读者更好地理解和运用这些现代Java特性。
|
3月前
|
编解码 弹性计算 运维
AWS无服务器直播解决方案
AWS无服务器直播解决方案
|
4月前
|
Java 程序员 API
Java 8新特性之Lambda表达式与Stream API的探索
【9月更文挑战第24天】本文将深入浅出地介绍Java 8中的重要新特性——Lambda表达式和Stream API,通过实例解析其语法、用法及背后的设计哲学。我们将一探究竟,看看这些新特性如何让Java代码变得更加简洁、易读且富有表现力,同时提升程序的性能和开发效率。
|
5月前
|
Java API
Java 8新特性:Lambda表达式与Stream API的深度解析
【7月更文挑战第61天】本文将深入探讨Java 8中的两个重要特性:Lambda表达式和Stream API。我们将首先介绍Lambda表达式的基本概念和语法,然后详细解析Stream API的使用和优势。最后,我们将通过实例代码演示如何结合使用Lambda表达式和Stream API,以提高Java编程的效率和可读性。
|
5月前
|
运维 Serverless API
函数计算产品使用问题之如何通过API传递ControlNet参数
函数计算产品作为一种事件驱动的全托管计算服务,让用户能够专注于业务逻辑的编写,而无需关心底层服务器的管理与运维。你可以有效地利用函数计算产品来支撑各类应用场景,从简单的数据处理到复杂的业务逻辑,实现快速、高效、低成本的云上部署与运维。以下是一些关于使用函数计算产品的合集和要点,帮助你更好地理解和应用这一服务。
|
5月前
|
运维 Serverless API
Serverless痛点解决问题之编写并部署一个弹性高可用的 Web API如何解决
Serverless痛点解决问题之编写并部署一个弹性高可用的 Web API如何解决
71 0

相关产品

  • 函数计算