《Hadoop实战第2版》——1.6节Hadoop数据管理

本文涉及的产品
数据管理 DMS,安全协同 3个实例 3个月
推荐场景:
学生管理系统数据库
简介: 本节书摘来自华章社区《Hadoop实战第2版》一书中的第1章,第1.6节Hadoop数据管理,作者:陆嘉恒,更多章节内容可以访问云栖社区“华章社区”公众号查看

1.6 Hadoop数据管理
前面重点介绍了Hadoop及其体系结构与计算模型MapReduce,现在开始介绍Hadoop的数据管理,主要包括Hadoop的分布式文件系统HDFS、分布式数据库HBase和数据仓库工具Hive。

1.6.1 HDFS的数据管理
HDFS是分布式计算的存储基石,Hadoop分布式文件系统和其他分布式文件系统有很多类似的特性:
对于整个集群有单一的命名空间;
具有数据一致性,都适合一次写入多次读取的模型,客户端在文件没有被成功创建之前是无法看到文件存在的;
文件会被分割成多个文件块,每个文件块被分配存储到数据节点上,而且会根据配置由复制文件块来保证数据的安全性。
通过前面的介绍和图1-3可以看出,HDFS通过三个重要的角色来进行文件系统的管理:NameNode、DataNode和Client。NameNode可以看做是分布式文件系统中的管理者,主要负责管理文件系统的命名空间、集群配置信息和存储块的复制等。NameNode会将文件系统的 Metadata存储在内存中,这些信息主要包括文件信息、每一个文件对应的文件块的信息和每一个文件块在DataNode中的信息等。DataNode是文件存储的基本单元,它将文件块(Block)存储在本地文件系统中,保存了所有Block的Metadata,同时周期性地将所有存在的 Block信息发送给NameNode。Client就是需要获取分布式文件系统文件的应用程序。接下来通过三个具体的操作来说明HDFS对数据的管理。
(1)文件写入
1)Client向NameNode发起文件写入的请求。
2)NameNode根据文件大小和文件块配置情况,返回给Client所管理的DataNode的信息。
3)Client将文件划分为多个Block,根据DataNode的地址信息,按顺序将其写入到每一个DataNode块中。
(2)文件读取
1)Client向NameNode发起文件读取的请求。
2)NameNode返回文件存储的DataNode信息。
3)Client读取文件信息。
(3)文件块(Block)复制
1)NameNode发现部分文件的Block不符合最小复制数这一要求或部分DataNode失效。
2)通知DataNode相互复制Block。
3)DataNode开始直接相互复制。
作为分布式文件系统,HDFS在数据管理方面还有值得借鉴的几个功能:
文件块(Block)的放置:一个Block会有三份备份,一份放在NameNode指定的DataNode上,另一份放在与指定DataNode不在同一台机器上的DataNode上,最后一份放在与指定DataNode同一Rack的DataNode上。备份的目的是为了数据安全,采用这种配置方式主要是考虑同一Rack失败的情况,以及不同Rack之间进行数据复制会带来的性能问题。
心跳检测:用心跳检测DataNode的健康状况,如果发现问题就采取数据备份的方式来保证数据的安全性。
数据复制(场景为DataNode失败、需要平衡DataNode的存储利用率和平衡DataNode数据交互压力等情况):使用Hadoop时可以用HDFS的balancer命令配置Threshold来平衡每一个DataNode的磁盘利用率。假设设置了Threshold为10%,那么执行balancer命令时,首先会统计所有DataNode的磁盘利用率的平均值,然后判断如果某一个DataNode的磁盘利用率超过这个平均值,那么将会把这个DataNode的Block转移到磁盘利用率低的DataNode上,这对于新节点的加入十分有用。
数据校验:采用CRC32做数据校验。在写入文件块的时候,除了会写入数据外还会写入校验信息,在读取的时候则需要先校验后读入。
单个NameNode:如果单个NameNode失败,任务处理信息将会记录在本地文件系统和远端的文件系统中。
数据管道性的写入:当客户端要写入文件到DataNode上时,首先会读取一个Block,然后将其写到第一个DataNode上,接着由第一个 DataNode将其传递到备份的DataNode上,直到所有需要写入这个Block的DataNode都成功写入后,客户端才会开始写下一个Block。
安全模式:分布式文件系统启动时会进入安全模式(系统运行期间也可以通过命令进入安全模式),当分布式文件系统处于安全模式时,文件系统中的内容不允许修改也不允许删除,直到安全模式结束。安全模式主要是为了在系统启动的时候检查各个DataNode上数据块的有效性,同时根据策略进行必要的复制或删除部分数据块。在实际操作过程中,如果在系统启动时修改和删除文件会出现安全模式不允许修改的错误提示,只需要等待一会儿即可。

1.6.2 HBase的数据管理
HBase是一个类似Bigtable的分布式数据库,它的大部分特性和Bigtable一样,是一个稀疏的、长期存储的(存在硬盘上)、多维度的排序映射表,这张表的索引是行关键字、列关键字和时间戳。表中的每个值是一个纯字符数组,数据都是字符串,没有类型。用户在表格中存储数据,每一行都有一个可排序的主键和任意多的列。由于是稀疏存储的,所以同一张表中的每一行数据都可以有截然不同的列。列名字的格式是“< family>:< label>”,它是由字符串组成的,每一张表有一个family集合,这个集合是固定不变的,相当于表的结构,只能通过改变表结构来改变表的family集合。但是label值相对于每一行来说都是可以改变的。
HBase把同一个family中的数据存储在同一个目录下,而HBase的写操作是锁行的,每一行都是一个原子元素,都可以加锁。所有数据库的更新都有一个时间戳标记,每次更新都会生成一个新的版本,而HBase会保留一定数量的版本,这个值是可以设定的。客户端可以选择获取距离某个时间点最近的版本,或者一次获取所有版本。
以上从微观上介绍了HBase的一些数据管理措施。那么HBase作为分布式数据库在整体上从集群出发又是如何管理数据的呢?
HBase在分布式集群上主要依靠由HRegion、HMaster、HClient组成的体系结构从整体上管理数据。
HBase体系结构有三大重要组成部分:
HBaseMaster:HBase主服务器,与Bigtable的主服务器类似。
HRegionServer:HBase域服务器,与Bigtable的Tablet服务器类似。
HBase Client:HBase客户端是由org.apache.hadoop.HBase.client.HTable定义的。
下面将对这三个组件进行详细的介绍。
(1)HBaseMaster
一个HBase只部署一台主服务器,它通过领导选举算法(Leader Election Algorithm)确保只有唯一的主服务器是活跃的,ZooKeeper保存主服务器的服务器地址信息。如果主服务器瘫痪,可以通过领导选举算法从备用服务器中选择新的主服务器。
主服务器承担着初始化集群的任务。当主服务器第一次启动时,会试图从HDFS获取根或根域目录,如果获取失败则创建根或根域目录,以及第一个元域目录。在下次启动时,主服务器就可以获取集群和集群中所有域的信息了。同时主服务器还负责集群中域的分配、域服务器运行状态的监视、表格的管理等工作。
(2)HRegionServer
HBase域服务器的主要职责有服务于主服务器分配的域、处理客户端的读写请求、本地缓冲区回写、本地数据压缩和分割域等功能。
每个域只能由一台域服务器来提供服务。当它开始服务于某域时,它会从HDFS文件系统中读取该域的日志和所有存储文件,同时还会管理操作HDFS文件的持久性存储工作。客户端通过与主服务器通信获取域和域所在域服务器的列表信息后,就可以直接向域服务器发送域读写请求,来完成操作。
(3)HBaseClient
HBase客户端负责查找用户域所在的域服务器地址。HBase客户端会与HBase主机交换消息以查找根域的位置,这是两者之间唯一的交流。
定位根域后,客户端连接根域所在的域服务器,并扫描根域获取元域信息。元域信息中包含所需用户域的域服务器地址。客户端再连接元域所在的域服务器,扫描元域以获取所需用户域所在的域服务器地址。定位用户域后,客户端连接用户域所在的域服务器并发出读写请求。用户域的地址将在客户端被缓存,后续的请求无须重复上述过程。
综上所述,在HBase的体系结构中,HBase主要由主服务器、域服务器和客户端三部分组成。主服务器作为HBase的中心,管理整个集群中的所有域,监控每台域服务器的运行情况等;域服务器接收来自服务器的分配域,处理客户端的域读写请求并回写映射文件等;客户端主要用来查找用户域所在的域服务器地址信息。
1.6.3 Hive的数据管理
Hive是建立在Hadoop上的数据仓库基础构架。它提供了一系列的工具,用来进行数据提取、转化、加载,这是一种可以存储、查询和分析存储在Hadoop中的大规模数据的机制。Hive定义了简单的类SQL的查询语言,称为Hive QL,它允许熟悉SQL的用户用SQL语言查询数据。作为一个数据仓库,Hive的数据管理按照使用层次可以从元数据存储、数据存储和数据交换三方面来介绍。
(1)元数据存储
Hive将元数据存储在RDBMS中,有三种模式可以连接到数据库:
Single User Mode:此模式连接到一个In-memory的数据库Derby,一般用于Unit Test。
Multi User Mode:通过网络连接到一个数据库中,这是最常用的模式。
Remote Server Mode:用于非Java客户端访问元数据库,在服务器端启动一个 MetaStoreServer,客户端利用Thrift协议通过 MetaStoreServer来访问元数据库。
(2)数据存储
首先,Hive没有专门的数据存储格式,也没有为数据建立索引,用户可以非常自由地组织Hive中的表,只需要在创建表的时候告诉Hive数据中的列分隔符和行分隔符,它就可以解析数据了。
其次,Hive中所有的数据都存储在HDFS中,Hive中包含4种数据模型:Table、External Table、Partition和Bucket。
Hive中的Table和数据库中的Table在概念上是类似的,每一个Table在Hive中都有一个相应的目录来存储数据。例如,一个表pvs,它在HDFS中的路径为:/wh/pvs,其中,wh是在hive-site.xml中由${hive.metastore.warehouse.dir}指定的数据仓库的目录,所有的 Table数据(不包括External Table)都保存在这个目录中。
(3)数据交换
数据交换主要分为以下几部分,如图1-5所示。
用户接口:包括客户端、Web界面和数据库接口。
元数据存储:通常存储在关系数据库中,如MySQL、Derby等。
解释器、编译器、优化器、执行器。
Hadoop:利用HDFS进行存储,利用MapReduce进行计算。
用户接口主要有三个:客户端、数据库接口和Web界面,其中最常用的是客户端。Client是Hive的客户端,当启动Client模式时,用户会想要连接Hive Server,这时需要指出 Hive Server所在的节点,并且在该节点启动HiveServer。Web界面是通过浏览器访问Hive的。
Hive将元数据存储在数据库中,如MySQL、Derby中。Hive 中的元数据包括表的名字、表的列、表的分区、表分区的属性、表的属性(是否为外部表等)、表的数据所在目录等。
解释器、编译器、优化器完成Hive QL查询语句从词法分析、语法分析、编译、优化到查询计划的生成。生成的查询计划存储在HDFS中,并且随后由MapReduce调用执行。
Hive的数据存储在HDFS中,大部分的查询由MapReduce完成(包含的查询不会生成MapRedcue任务,比如select from tbl)。
以上从Hadoop的分布式文件系统HDFS、分布式数据库HBase和数据仓库工具Hive入手介绍了Hadoop的数据管理,它们都通过自己的数据定义、体系结构实现了数据从宏观到微观的立体化管理,完成了Hadoop平台上大规模的数据存储和任务处理。


f5c70ad685c1c33c65fd1b4fbc1e46c30194a381
相关实践学习
MySQL基础-学生管理系统数据库设计
本场景介绍如何使用DMS工具连接RDS,并使用DMS图形化工具创建数据库表。
相关文章
|
8月前
|
分布式计算 Java 大数据
【大数据技术Hadoop+Spark】HDFS Shell常用命令及HDFS Java API详解及实战(超详细 附源码)
【大数据技术Hadoop+Spark】HDFS Shell常用命令及HDFS Java API详解及实战(超详细 附源码)
763 0
|
8月前
|
分布式计算 大数据 Scala
【大数据技术Hadoop+Spark】Spark RDD创建、操作及词频统计、倒排索引实战(超详细 附源码)
【大数据技术Hadoop+Spark】Spark RDD创建、操作及词频统计、倒排索引实战(超详细 附源码)
366 1
|
7月前
|
存储 分布式计算 Hadoop
Hadoop Distributed File System (HDFS): 概念、功能点及实战
【6月更文挑战第12天】Hadoop Distributed File System (HDFS) 是 Hadoop 生态系统中的核心组件之一。它设计用于在大规模集群环境中存储和管理海量数据,提供高吞吐量的数据访问和容错能力。
714 4
|
3月前
Hadoop-09-HDFS集群 JavaClient 代码上手实战!详细附代码 安装依赖 上传下载文件 扫描列表 PUT GET 进度条显示(二)
Hadoop-09-HDFS集群 JavaClient 代码上手实战!详细附代码 安装依赖 上传下载文件 扫描列表 PUT GET 进度条显示(二)
52 3
|
3月前
|
分布式计算 Java Hadoop
Hadoop-09-HDFS集群 JavaClient 代码上手实战!详细附代码 安装依赖 上传下载文件 扫描列表 PUT GET 进度条显示(一)
Hadoop-09-HDFS集群 JavaClient 代码上手实战!详细附代码 安装依赖 上传下载文件 扫描列表 PUT GET 进度条显示(一)
51 2
|
4月前
|
存储 数据管理 应用服务中间件
Docker的数据管理实战篇
关于Docker数据管理实战的教程,涵盖了Docker数据卷的使用、特点、场景以及数据卷容器的概念和应用。
76 13
Docker的数据管理实战篇
|
4月前
|
分布式计算 Hadoop Devops
Hadoop集群配置https实战案例
本文提供了一个实战案例,详细介绍了如何在Hadoop集群中配置HTTPS,包括生成私钥和证书文件、配置keystore和truststore、修改hdfs-site.xml和ssl-client.xml文件,以及重启Hadoop集群的步骤,并提供了一些常见问题的故障排除方法。
98 3
|
4月前
|
分布式计算 监控 Hadoop
监控Hadoop集群实战篇
介绍了监控Hadoop集群的方法,包括监控Linux服务器、Hadoop指标、使用Ganglia监控Hadoop集群、Hadoop日志记录、通过Hadoop的Web UI进行监控以及其他Hadoop组件的监控,并提供了相关监控工具和资源的推荐阅读链接。
109 2
|
5月前
|
JSON 数据管理 关系型数据库
【Dataphin V3.9】颠覆你的数据管理体验!API数据源接入与集成优化,如何让企业轻松驾驭海量异构数据,实现数据价值最大化?全面解析、实战案例、专业指导,带你解锁数据整合新技能!
【8月更文挑战第15天】随着大数据技术的发展,企业对数据处理的需求不断增长。Dataphin V3.9 版本提供更灵活的数据源接入和高效 API 集成能力,支持 MySQL、Oracle、Hive 等多种数据源,增强 RESTful 和 SOAP API 支持,简化外部数据服务集成。例如,可轻松从 RESTful API 获取销售数据并存储分析。此外,Dataphin V3.9 还提供数据同步工具和丰富的数据治理功能,确保数据质量和一致性,助力企业最大化数据价值。
238 1
|
5月前
|
资源调度 分布式计算 监控
【揭秘Hadoop YARN背后的奥秘!】从零开始,带你深入了解YARN资源管理框架的核心架构与实战应用!
【8月更文挑战第24天】Hadoop YARN(Yet Another Resource Negotiator)是Hadoop生态系统中的资源管理器,为Hadoop集群上的应用提供统一的资源管理和调度框架。YARN通过ResourceManager、NodeManager和ApplicationMaster三大核心组件实现高效集群资源利用及多框架支持。本文剖析YARN架构及组件工作原理,并通过示例代码展示如何运行简单的MapReduce任务,帮助读者深入了解YARN机制及其在大数据处理中的应用价值。
117 0