检索技术:索引拆分

简介: 本文介绍了分布式技术在大规模检索系统中的应用,重点探讨了如何通过分发服务器与索引服务器协作提升系统吞吐量,并分析了基于业务、文档和关键词的索引拆分策略,阐述了各类方案的优缺点及适用场景。

在互联网行业中,分布式系统是一个非常重要的技术方向。我们熟悉的搜索引擎、广告引擎和推荐引擎,这些大规模的检索系统都采用了分布式技术。

分布式技术有什么优点呢?分布式技术就是将大任务分解成多个子任务,使用多台服务器共同承担任务,让整体系统的服务能力相比于单机系统得到了大幅提升。而且,在 第 8 讲 中我们就讲过,在索引构建的时候,我们可以使用分布式技术来提升索引构建的效率。

那今天,我们就来聊一聊,大规模检索系统中是如何使用分布式技术来加速检索的。.

简单的分布式结构是什么样的?


一个完备的分布式系统会有复杂的服务管理机制,包括服务注册、服务发现、负载均衡、流量控制、远程调用和冗余备份等。在这里,我们先抛开分布式系统的实现细节,回归到它的本质,也就是从「让多台服务器共同承担任务」入手,来看一个简单的分布式检索系统是怎样工作的。

首先,我们需要一台接收请求的服务器,但是该服务器并不执行具体的查询工作,它只负责任务分发,我们把它叫作 分发服务器。真正执行检索任务的是 多台索引服务器,每台索引服务器上都保存着完整的倒排索引,它们都能完成检索的工作。

当分发服务器接到请求时,它会根据负载均衡机制,将当前查询请求发给某台较为空闲的索引服务器进行查询。具体的检索工作由该台索引服务器独立完成,并返回结果。

现在,分布式检索系统的结构你已经知道了,那它的效率怎么样呢?举个例子,如果一台索引服务器一秒钟能处理 1000 条请求,那我们同时使用 10 台索引服务器,整个系统一秒钟就能处理 10000 条请求了。也就是说,这样简单的分布式系统,就能大幅提升整个检索系统的处理能力。

但是,这种简单的分布式系统有一个问题:它仅能提升检索系统整体的「吞吐量」,而不能缩短一个查询的检索时间。也就是说,如果单机处理一个查询请求的耗时是 1 秒钟,那不管我们增加了多少台机器,单次查询的检索时间依然是 1 秒钟。所以,如果我们想要缩短检索时间,这样的分布式系统是无法发挥作用的。

那么,我们能否利用多台机器,来提升单次检索的效率呢?我们先来回顾一下,在前面讨论工业级的倒排索引时我们说过,对于存储在磁盘上的大规模索引数据,我们要尽可能地将数据加载到内存中,以此来减少磁盘访问次数,从而提升检索效率。

根据这个思路,当多台服务器的总内存量远远大于单机的内存时,我们可以把倒排索引拆分开,分散加载到每台服务器的内存中。这样,我们就可以避免或者减少磁盘访问,从而提升单次检索的效率了。

即使原来的索引都能加载到内存中,索引拆分依然可以帮助我们提升单次检索的效率。这是因为,检索时间和数据规模是正相关的。当索引拆分以后,每台服务器上加载的数据都会比全量数据少,那每台服务器上的单次查询所消耗的时间也就随之减少了。

因此,索引拆分是检索加速的一个重要优化方案,至于索引应该如何拆分,以及拆分后该如何检索,工业界也有很多不同的实现方法。你可以先自己想一想,然后我们再一起来看看,工业界一般都是怎么做的。

如何进行业务拆分?


首先,在工业界中一个最直接的索引拆分思路,是根据业务进行索引拆分。那具体该如何拆分呢?

我来举个例子。在图书管理系统中,有许多不同国籍的作家的作品。如果我们将它们分成国内作品和国外作品两大类,分别建立两个倒排索引,这就完成了索引拆分。索引拆分之后,我们可以使用不同的服务器加载不同的索引。在检索的时候,我们需要先判断检索的是国内作品还是国外作品,然后在检索界面上做好选择,这样系统就可以只在一个索引上查询了。如果我们不能确认是哪类作品,那也没关系,系统可以在两个索引中并行查找,然后将结果汇总。

你会看到,基于业务的拆分是一个实用的索引拆分方案,在许多应用场景中都可以使用。但是这种方案和 业务的耦合性太强,需要根据不同的业务需求灵活调整。那我们有没有更通用的技术解决方案呢?你可以先想一下,然后我们一起来讨论。

如何基于文档进行拆分?


以搜索引擎为例,一个通用的方案是借鉴索引构建的拆分思路,将大规模文档集合随机划分为多个小规模的文档集合分别处理。这样我们就可以基于文档进行拆分,建立起多个倒排索引了。其中,每个倒排索引都是一个索引分片,它们分别由不同的索引服务器负责。每个索引分片只包含部分文档,所以它们的 posting list 都不会太长,这样单机的检索效率也就得到了提升。

但是,这样拆分出来的任意一个单独的索引分片,它检索出来的结果都不完整,我们还需要合并操作才能得到最后的检索结果。因此,对于基于文档进行拆分的分布式方案,我们的检索流程可以总结为 3 个步骤:

  1. 分发服务器接受查询请求,将请求发送给所有不同索引分片的索引服务器;
  2. 每台索引服务器根据自己加载的索引分片进行检索,将查询结果返回分发服务器;
  3. 分发服务器将所有返回的结果进行合并处理,再返回最终结果。


这种基于文档拆分的方案是随机划分的,所以我们可以不用关心业务细节。而且每个索引分片的大小都能足够相近,因此,这种拆分方式能很均匀地划分检索空间和分担检索负载。并且,如果我们将索引数据分成合适的份数,是有可能将所有数据都加载到内存中的。由于每个索引分片中的文档列表都不长,因此每台机器对于单个请求都能在更短的时间内返回,从而加速了检索效率。

但是,分片的数量也不宜过多。这是因为,一个查询请求会被复制到所有的索引分片上,如果分片过多的话,每台加载索引分片的服务器都要返回 n 个检索结果,这会带来成倍的网络传输开销。而且,分片越多,分发服务器需要合并的工作量也会越大,这会使得分发服务器成为瓶颈,造成性能下降。因此,对于索引分片数量,我们需要考虑系统的实际情况进行合理的设置。

如何基于关键词进行拆分?


在搜索引擎中,为了解决分片过多导致一次请求被复制成多次的问题,我们还可以使用另一种拆分方案,那就是基于关键词进行拆分。这种方案将词典划分成多个分片,分别加载到不同的索引服务器上。每台索引服务器上的词典都是不完整的,但是词典中关键词对应的文档列表都是完整的。

当用户查询时,如果只有一个关键词,那我们只需要查询存有这个关键词的一台索引服务器,就能得到完整的文档列表,而不需要给所有的索引服务器都发送请求;当用户同时查询两个关键词时,如果这两个关键词也同时属于一个索引分片的话,那系统依然只需要查询一台索引服务器即可。如果分别属于两个分片,那我们就需要发起两次查询,再由分发服务器进行结果合并。

也就是说,在查询词少的情况下,如果能合理分片,我们就可以大幅降低请求复制的代价了。

但是这种切分方案也带来了很多复杂的管理问题,比如,如果查询词很多并且没有被划分到同一个分片中,那么请求依然会被多次复制。再比如,以及如果有的关键词是高频词,那么对应的文档列表会非常长,检索性能也会急剧下降。此外,还有新增文档的索引修改问题,系统热点查询负载均衡的问题等。

因此,除了少数的高性能检索场景有需求以外,一般我们还是基于文档进行索引拆分。这样,系统的扩展性和可运维性都会更好。

相关文章
|
5天前
|
存储 JavaScript 前端开发
JavaScript基础
本节讲解JavaScript基础核心知识:涵盖值类型与引用类型区别、typeof检测类型及局限性、===与==差异及应用场景、内置函数与对象、原型链五规则、属性查找机制、instanceof原理,以及this指向和箭头函数中this的绑定时机。重点突出类型判断、原型继承与this机制,助力深入理解JS面向对象机制。(238字)
|
4天前
|
云安全 人工智能 安全
阿里云2026云上安全健康体检正式开启
新年启程,来为云上环境做一次“深度体检”
1579 6
|
6天前
|
安全 数据可视化 网络安全
安全无小事|阿里云先知众测,为企业筑牢防线
专为企业打造的漏洞信息收集平台
1322 2
|
5天前
|
缓存 算法 关系型数据库
深入浅出分布式 ID 生成方案:从原理到业界主流实现
本文深入探讨分布式ID的生成原理与主流解决方案,解析百度UidGenerator、滴滴TinyID及美团Leaf的核心设计,涵盖Snowflake算法、号段模式与双Buffer优化,助你掌握高并发下全局唯一ID的实现精髓。
346 160
|
5天前
|
人工智能 自然语言处理 API
n8n:流程自动化、智能化利器
流程自动化助你在重复的业务流程中节省时间,可通过自然语言直接创建工作流啦。
406 6
n8n:流程自动化、智能化利器
|
7天前
|
人工智能 API 开发工具
Skills比MCP更重要?更省钱的多!Python大佬这观点老金测了一周终于懂了
加我进AI学习群,公众号右下角“联系方式”。文末有老金开源知识库·全免费。本文详解Claude Skills为何比MCP更轻量高效:极简配置、按需加载、省90% token,适合多数场景。MCP仍适用于复杂集成,但日常任务首选Skills。推荐先用SKILL.md解决,再考虑协议。附实测对比与配置建议,助你提升效率,节省精力。关注老金,一起玩转AI工具。
|
14天前
|
机器学习/深度学习 安全 API
MAI-UI 开源:通用 GUI 智能体基座登顶 SOTA!
MAI-UI是通义实验室推出的全尺寸GUI智能体基座模型,原生集成用户交互、MCP工具调用与端云协同能力。支持跨App操作、模糊语义理解与主动提问澄清,通过大规模在线强化学习实现复杂任务自动化,在出行、办公等高频场景中表现卓越,已登顶ScreenSpot-Pro、MobileWorld等多项SOTA评测。
1542 7
|
4天前
|
Linux 数据库
Linux 环境 Polardb-X 数据库 单机版 rpm 包 安装教程
本文介绍在CentOS 7.9环境下安装PolarDB-X单机版数据库的完整流程,涵盖系统环境准备、本地Yum源配置、RPM包安装、用户与目录初始化、依赖库解决、数据库启动及客户端连接等步骤,助您快速部署运行PolarDB-X。
246 1
Linux 环境 Polardb-X 数据库 单机版 rpm 包 安装教程
|
8天前
|
人工智能 前端开发 API
Google发布50页AI Agent白皮书,老金帮你提炼10个核心要点
老金分享Google最新AI Agent指南:让AI从“动嘴”到“动手”。Agent=大脑(模型)+手(工具)+协调系统,可自主完成任务。通过ReAct模式、多Agent协作与RAG等技术,实现真正自动化。入门推荐LangChain,文末附开源知识库链接。
670 119