Java泛型类型擦除以及类型擦除带来的问题

简介: Java泛型在编译时会进行类型擦除,所有泛型信息被移除,替换为原始类型(如Object或限定类型)。例如,List<String>和List<Integer>在运行时均为List,导致无法通过instanceof判断泛型类型。类型检查在编译期完成,基于引用而非对象本身。擦除后通过桥方法实现多态,自动插入强制转换确保类型安全,但静态成员不能使用类的泛型参数,基本类型需用包装类。

1.什么是泛型擦除
我们都知道Java的泛型是伪泛型,即编译期间所有的泛型信息都会被擦除,如我们代码定义了:List和List,但是对于JVM而言,看到的只有List,由泛型附加的类型信息对于JVM而言是看不到的。代码说明如下:
1.1 原始类型擦除后相等
public class Test {
public static void main(String[] args) {
ArrayList list1 = new ArrayList();
list1.add("abc");
    ArrayList<Integer> list2 = new ArrayList<Integer>();
    list2.add(123);

    System.out.println(list1.getClass() == list2.getClass());
}

}
在这个例子中,我们定义了两个ArrayList数组,不过一个是ArrayList泛型类型的,只能存储字符串;一个是ArrayList泛型类型的,只能存储整数,最后,我们通过list1对象和list2对象的getClass()方法获取他们的类的信息,最后发现结果为true。说明泛型类型String和Integer都被擦除掉了,只剩下原始类型。
1.2 反射添加的元素被擦除
public static void main(String[] args)
throws NoSuchMethodException, InvocationTargetException, IllegalAccessException {
ArrayList list = new ArrayList();
list.add(1); //这样调用 add 方法只能存储整形,因为泛型类型的实例为 Integer
list.getClass().getMethod("add", Object.class).invoke(list, "asd");

    for (int i = 0; i < list.size(); i++) {
        // 输出1    asd
        System.out.println(list.get(i));
    }
}

如果直接调用add()方法,那么只能存储整数数据,不过当我们利用反射调用add()方法的时候,却可以存储字符串,这说明了Integer泛型实例在编译之后被擦除掉了,只保留了原始类型。
2.什么是泛型擦除后保留的原始类型
原始类型 就是擦除去了泛型信息,最后在字节码中的类型变量的真正类型,无论何时定义一个泛型,相应的原始类型都会被自动提供,类型变量擦除,并使用其限定类型(无限定的变量用Object)替换。举例说明
class Pair {
private T value;
public T getValue() {
return value;
}
public void setValue(T value) {
this.value = value;
}
}
其对应的原始类型就是
class Pair {
private Object value;
public Object getValue() {
return value;
}
public void setValue(Object value) {
this.value = value;
}
}
但如果该类的定义有限定,比如继承了,那么就会产生变化:
public class Pair {}
此时原始类型就是Comparable,而不再是Object
3.泛型擦除引起的问题及解决方法
3.1 先检查,再编译以及编译的对应和引用传递问题
这里我们可能会有一个疑问,既然说类型变量会在编译的时候擦除掉,那为什么上面的ArrayList中添加String类型的时候就报错了呢,因为String编译时候也会变成Object啊?
A:因为JAVA编译器是通过先检查代码中泛型的类型,然后再进行类型擦除,再进行编译的。那么这个检查到底是针对谁的,我们需要再明确下
A2:如我们上面代码是:
ArrayList list = new ArrayList();
现在我们写成:
ArrayList list = new ArrayList();
此时如果我们与之前的代码兼容,各种引用传值之间,必然会出现下面情况:
ArrayList list1 = new ArrayList(); //第一种 情况
ArrayList list2 = new ArrayList(); //第二种 情况
这样没错,但是会有个编译时警告,不过在第一种情况下,可以实现与完全使用泛型参数一样的效果,但是第二种没有效果。
因为类型检查是编译时完成的,new ArrayList()只是在内存中开辟一个存储空间,可以存储任何类型的对象,而真正涉及类型检查的是“它的引用”,即list1的方法调用,如add方法,所以list1引用能够完成泛型类型检查(前面声明了String),但是list2(后面声明的只是开辟内存空间,不涉及)由于前面的声明没有添加泛型,所以不行。

所以这里我们也大概知道了,所谓的类型(泛型)检查,是针对引用的。谁是一个引用,用这个引用调用泛型方法,就会对这个引用所调用的方法进行类型检查,而无关它真正引用的对象。
3.2 自动类型转换
因为类型擦除的问题,所以所有的泛型类型变量在最后都会被替换成原始类型,既然都被替换了,那么为什么获取的时候,不需要进行强制类型转换呢?可以看下 ArrayList.get() 方法
public E get(int index) {

RangeCheck(index);  

return (E) elementData[index];  

}
可以看到,在return之前,会根据泛型变量进行强转。假设泛型类型变量为Date,虽然泛型信息会被擦除掉,但是会将(E) elementData[index],编译为(Date) elementData[index]。所以我们不用自己进行强转。当存取一个泛型域时也会自动插入强制类型转换。假设Pair类的value域是public的,那么表达式:
Date date = pair.value;
也会自动地在结果字节码中插入强制类型转换。
3.3 泛型擦除与多态的冲突与解决方法
假设有一个泛型类
class Pair {

private T value;  

public T getValue() {  
    return value;  
}  

public void setValue(T value) {  
    this.value = value;  
}  

}
然后有一个子类需要继承
class DateInter extends Pair {

@Override  
public void setValue(Date value) {  
    super.setValue(value);  
}  

@Override  
public Date getValue() {  
    return super.getValue();  
}  

}
在这个子类中,我们设定父类的泛型类型为Pair,在子类中,我们覆盖了父类的两个方法,我们的原意是这样的:将父类的泛型类型限定为Date,那么父类里面的两个方法的参数都为Date类型。
所以,我们在子类中重写这两个方法一点问题也没有,实际上,从他们的@Override标签中也可以看到,一点问题也没有,实际上是这样的吗?
分析:实际上,类型擦除后,父类的的泛型类型全部变为了原始类型Object,所以父类编译之后会变成下面的样子:
class Pair {
private Object value;

public Object getValue() {  
    return value;  
}  

public void setValue(Object  value) {  
    this.value = value;  
}  

}
而此时,子类中类型依然是Date,这如果还是在继承关系中,那么根本就不是重写,而是重载了。通过反编译会发现子类中的方法Object getValue()和Date getValue()是同 时存在的,可是如果是常规的两个方法,他们的方法签名是一样的,也就是说虚拟机根本不能分别这两个方法。如果是我们自己编写Java代码,这样的代码是无法通过编译器的检查的,但是虚拟机却是允许这样做的,因为虚拟机通过参数类型和返回类型来确定一个方法,所以编译器为了实现泛型的多态允许自己做这个看起来“不合法”的事情,然后交给虚拟器去区别。
3.4 泛型类型变量不能是基本数据类型
不能用类型参数替换基本类型。就比如,没有ArrayList,只有ArrayList。因为当类型擦除后,ArrayList的原始类型变为Object,但是Object类型不能存储double值,只能引用Double的值。
3.5 编译时集合的instanceof(可能面试考察)
ArrayList arrayList = new ArrayList();
因为类型擦除之后,ArrayList只剩下原始类型,泛型信息String不存在了。那么,编译时进行类型查询的时候使用下面的方法是错误的
if( arrayList instanceof ArrayList)
3.6 泛型在静态方法和静态类中的问题(可能面试考察)
泛型类中的静态方法和静态变量不可以使用泛型类所声明的泛型类型参数,举例说明:
public class Test2 {
public static T one; //编译错误
public static T show(T one){ //编译错误
return null;
}
}
因为泛型类中的泛型参数的实例化是在对象定义时候指定的,而静态变量和静态方法是不需要通过对象来调用的,对象都没有创建,如何确定这个泛型是何类型呢?所以说上面的代码明显是错误的。

但是需要注意下面的一种特殊情况
public class Test2 {
public static T show(T one){ //这是正确的
return null;
}
}
因为这是一个泛型方法,在泛型方法中使用过的T是自己在方法中定义的T,而不是泛型中的T

相关文章
|
19小时前
|
数据采集 DataWorks Cloud Native
云原生数据中台建设方案
本文系统阐述云原生数据中台建设方案,基于“采集-计算-治理-服务”四层架构,结合阿里云产品矩阵与零售行业实践,提供从数据整合、批流一体计算、质量安管到API服务输出的全链路指南,助力企业打破孤岛、实现数据资产化与业务价值转化。
10 0
|
12小时前
|
监控 安全 网络安全
VPC专有网络搭建与安全组配置
本文系统介绍VPC专有网络搭建与安全组配置,涵盖CIDR规划、子网划分、路由策略、NAT/VPN网关应用、安全组最小权限原则及混合云连接方案,结合多区域互联实战与安全检查清单,全面呈现云上网络安全架构最佳实践。
|
15小时前
|
存储 缓存 安全
One Trick Per Day
初始化Map应避免容量设置不当,推荐使用Guava的`newHashMapWithExpectedSize`或手动计算容量。禁止使用`Executors`创建线程池,易因无界队列或过多线程引发OOM,应通过`ThreadPoolExecutor`显式定义参数。`Arrays.asList`返回不可变列表,不支持增删操作,且与原数组共享数据。遍历Map时优先使用`entrySet`或JDK8的`forEach`,提升性能。`SimpleDateFormat`非线程安全,建议用`ThreadLocal`隔离或使用Java 8新时间API。
12 0
|
12小时前
|
弹性计算 负载均衡 监控
SLB负载均衡配置完全指南
本文全面解析SLB负载均衡配置,涵盖CLB、ALB、NLB类型对比,四层与七层架构差异,健康检查、会话保持、安全防护及监控告警等核心配置,并结合高可用Web集群实验,系统呈现SLB部署全流程与最佳实践,助力构建稳定、高效、安全的分布式应用架构。
|
15小时前
|
运维 安全 Devops
生产环境缺陷管理
git-poison基于go-git实现分布式bug追溯管理,解决多分支开发中bug漏修、漏发等问题。通过“投毒-解毒-银针”机制,自动化卡点发布流程,降低协同成本,避免人为失误,已在大型团队落地应用,显著提升发布安全与效率。(238字)
13 0
|
12小时前
|
Java 测试技术 Linux
生产环境发布管理
本文介绍大型团队如何通过自动化部署平台实现多环境(dev/test/pre/prod)高效发布与运维。涵盖各环境职责、基于Jenkins+K8S的CI/CD流程、分支管理、一键发布及回滚机制,并结合Skywalking实现日志链路追踪,提升问题定位与修复效率,助力企业级DevOps落地。(238字)
|
12小时前
|
数据可视化 Java 关系型数据库
01-认识Activiti
工作流指如请假、报销等需审批的业务流程,通过可视化引擎实现多节点审批,广泛应用于CRM、TMS等系统。传统数据库难以支撑复杂流程,催生了BPMN、Activiti、Flowable等技术,推动泛微、用友等企业发展,实现高效自动化管理。(239字)
|
12小时前
|
监控 关系型数据库 MySQL
云数据库RDS实战:MySQL/PostgreSQL性能优化
本文深入解析云数据库RDS在MySQL/PostgreSQL场景下的性能优化实践,涵盖实例配置、参数调优、监控告警、高可用架构与数据迁移全流程。结合电商订单库实战案例,系统阐述如何通过规格升级、索引优化、读写分离等手段提升数据库性能与稳定性,助力企业高效运维、保障业务连续性。(238字)
|
12小时前
|
存储 缓存 区块链
Web3.0与云计算融合
### 摘要 本文围绕Web3.0与云计算融合展开,先阐述Web3.0以去中心化、区块链为核心的核心概念,以及云计算作为数字经济基础设施的支撑作用,指出两者融合可互补短板、拓展价值空间。随后从融合基础设施(分布式存储与计算协同)、去中心化身份(DID)云上落地、智能合约云上部署运行、IPFS与云存储互补、去中心化计算与云算力协同、私钥管理云上防护等关键环节,拆解融合实践路径;结合NFT平台融合架构案例,展现实际应用价值;探讨数据、交易、身份层面的合规性要求;最后展望技术创新、应用场景拓展、生态构建三大发展趋势,为企业与开发者布局相关领域提供参考。 需要我将摘要补充到文档末尾,或者生成
10 0
|
12小时前
|
边缘计算 运维 监控
边缘计算场景实践
《边缘计算场景实践指南》系统阐述了边缘计算在5G、物联网与AI背景下的应用路径。涵盖云边端协同架构、ENS核心产品、CDN、视频分析与物联网等典型场景,详解部署流程、网络优化、安全防护与监控体系,并结合智慧工厂案例与成本分析,展望5G+边缘计算融合趋势,为企业落地边缘计算提供全面参考。(238字)