1.数据聚合
聚合(aggregations)可以让我们极其方便的实现对数据的统计、分析、运算。例如:
- 什么品牌的手机最受欢迎?
- 这些手机的平均价格、最高价格、最低价格?
- 这些手机每月的销售情况如何?
实现这些统计功能的比数据库的sql要方便的多,而且查询速度非常快,可以实现近实时搜索效果。
1.1.聚合的种类
聚合常见的有三类:
- 桶(Bucket)聚合:用来对文档做分组
- TermAggregation:按照文档字段值分组,例如按照品牌值分组、按照国家分组
- Date Histogram:按照日期阶梯分组,例如一周为一组,或者一月为一组
- 度量(Metric)聚合:用以计算一些值,比如:最大值、最小值、平均值等
- Avg:求平均值
- Max:求最大值
- Min:求最小值
- Stats:同时求max、min、avg、sum等
- 管道(pipeline)聚合:其它聚合的结果为基础做聚合
注意:参加聚合的字段必须是keyword、日期、数值、布尔类型
1.2.DSL实现聚合
现在,我们要统计所有数据中的酒店品牌有几种,其实就是按照品牌对数据分组。此时可以根据酒店品牌的名称做聚合,也就是Bucket聚合。
1.2.1.Bucket聚合语法
语法如下:
GET /hotel/_search { "size": 0, // 设置size为0,结果中不包含文档,只包含聚合结果 "aggs": { // 定义聚合 "brandAgg": { //给聚合起个名字 "terms": { // 聚合的类型,按照品牌值聚合,所以选择term "field": "brand", // 参与聚合的字段 "size": 20 // 希望获取的聚合结果数量 } } } }
结果如图:
1.2.2.聚合结果排序
默认情况下,Bucket聚合会统计Bucket内的文档数量,记为count,并且按照count降序排序。我们可以指定order属性,自定义聚合的排序方式:
GET /hotel/_search { "size": 0, "aggs": { "brandAgg": { "terms": { "field": "brand", "order": { "_count": "asc" // 按照_count升序排列(_count是自定义的key) }, "size": 20 } } } }
1.2.3.限定聚合范围
默认情况下,Bucket聚合是对索引库的所有文档做聚合,但真实场景下,用户会输入搜索条件,因此聚合必须是对搜索结果聚合。那么聚合必须添加限定条件。我们可以限定要聚合的文档范围,只要添加query条件即可:
GET /hotel/_search { "query": { "range": { "price": { "lte": 200 // 只对200元以下的文档聚合 } } }, "size": 0, "aggs": { "brandAgg": { "terms": { "field": "brand", "size": 20 } } } }
这次,聚合得到的品牌明显变少了:
1.2.4.Metric聚合语法
上节我们对酒店按照品牌分组,形成了一个个桶。现在我们需要对桶内的酒店做运算,获取每个品牌的用户评分的min、max、avg等值。这就要用到Metric聚合了,例如stat聚合:就可以获取min、max、avg等结果。
- 注意:嵌套的aggs应该在brandAgg内部,与terms保持平级
语法如下:
GET /hotel/_search { "size": 0, "aggs": { "brandAgg": { "terms": { "field": "brand", "size": 20 }, "aggs": { // 是brands聚合的子聚合,也就是分组后对每组分别计算 "score_stats": { // 聚合名称 "stats": { // 聚合类型,这里stats可以计算min、max、avg等 "field": "score" // 聚合字段,这里是score } } } } } }
这次的score_stats聚合是在brandAgg的聚合内部嵌套的子聚合。因为我们需要在每个桶分别计算。另外,我们还可以给聚合结果做个排序,例如按照每个桶的酒店平均分做排序:
GET /hotel/_search { "size": 0, "aggs": { "brandAgg": { "terms": { "field": "brand", "size": 20, "order": { "score_stats.avg": "asc" } }, "aggs": { "score_stats": { "stats": { "field": "score" } } } } } }
1.2.5.小结
aggs代表聚合,与query同级,此时query的作用是?
- 限定聚合的的文档范围
聚合必须的三要素:
- 聚合名称
- 聚合类型
- 聚合字段
聚合可配置属性有:
- size:指定聚合结果数量
- order:指定聚合结果排序方式
- field:指定聚合字段
1.3.RestAPI实现聚合
1.3.1.API语法
聚合条件与query条件同级别,因此需要使用request.source()来指定聚合条件。
聚合条件的语法:
聚合的结果也与查询结果不同,API也比较特殊。不过同样是JSON逐层解析:
完整代码如下:
@Test public void testBucket() throws IOException { // 准备请求 SearchRequest request = new SearchRequest("hotel182"); // 准备DSL request.source().size(0); request.source().aggregation(AggregationBuilders .terms("brand_agg") .field("brand") .size(20)); // 发起请求 SearchResponse search = client.search(request, RequestOptions.DEFAULT); // 解析结果 Aggregations aggregations = search.getAggregations(); Terms brandAggTems = aggregations.get("brand_agg"); List<? extends Terms.Bucket> buckets = brandAggTems.getBuckets(); for (Terms.Bucket bucket : buckets) { System.out.println("获取到分组:" + bucket.getKeyAsString() + ", 数量=" + bucket.getDocCount()); } }
完整映射关系如下:
1.3.2.业务需求
需求:搜索页面的品牌、城市等信息不应该是在页面写死,而是通过聚合索引库中的酒店数据得来的:
分析:目前,页面的城市列表、星级列表、品牌列表都是写死的,并不会随着搜索结果的变化而变化。但是用户搜索条件改变时,搜索结果会跟着变化。例如:用户搜索“东方明珠”,那搜索的酒店肯定是在上海东方明珠附近,因此,城市只能是上海,此时城市列表中就不应该显示北京、深圳、杭州这些信息了。
也就是说,搜索结果中包含哪些城市,页面就应该列出哪些城市;搜索结果中包含哪些品牌,页面就应该列出哪些品牌。如何得知搜索结果中包含哪些品牌?如何得知搜索结果中包含哪些城市?
使用聚合功能,利用Bucket聚合,对搜索结果中的文档基于品牌分组、基于城市分组,就能得知包含哪些品牌、哪些城市了。因为是对搜索结果聚合,因此聚合是限定范围的聚合,也就是说聚合的限定条件跟搜索文档的条件一致。
查看浏览器可以发现,前端其实已经发出了这样的一个请求:
请求参数与搜索文档的参数完全一致。返回值类型就是页面要展示的最终结果:
结果是一个Map结构:
- key是字符串,城市、星级、品牌、价格
- value是集合,例如多个城市的名称
1.3.3.业务实现
在cn.itcast.hotel.web包的HotelController中添加一个方法,遵循下面的要求:
- 请求方式:
POST - 请求路径:
/hotel/filters - 请求参数:
RequestParams,与搜索文档的参数一致 - 返回值类型:
Map<String, List<String>>
代码:
@PostMapping("filters") public Map<String, List<String>> getFilters(@RequestBody RequestParams params){ return hotelService.getFilters(params); }
这里调用了IHotelService中的getFilters方法,尚未实现(因此需要定义这个新的接口)。在cn.itcast.hotel.service.IHotelService中定义新接口方法:
Map<String, List<String>> filters(RequestParams params);
在cn.itcast.hotel.service.impl.HotelService中实现该方法:
@Override public Map<String, List<String>> filters(RequestParams params) { try { // 1.准备Request SearchRequest request = new SearchRequest("hotel"); // 2.准备DSL // 2.1.query buildBasicQuery(params, request); // 2.2.设置size request.source().size(0); // 2.3.聚合 buildAggregation(request); // 3.发出请求 SearchResponse response = client.search(request, RequestOptions.DEFAULT); // 4.解析结果 Map<String, List<String>> result = new HashMap<>(); Aggregations aggregations = response.getAggregations(); // 4.1.根据品牌名称,获取品牌结果 List<String> brandList = getAggByName(aggregations, "brandAgg"); result.put("brand", brandList); // 4.2.根据品牌名称,获取品牌结果 List<String> cityList = getAggByName(aggregations, "cityAgg"); result.put("city", cityList); // 4.3.根据品牌名称,获取品牌结果 List<String> starList = getAggByName(aggregations, "starAgg"); result.put("starName", starList); return result; } catch (IOException e) { throw new RuntimeException(e); } } private void buildAggregation(SearchRequest request) { request.source().aggregation(AggregationBuilders .terms("brandAgg") .field("brand") .size(100) ); request.source().aggregation(AggregationBuilders .terms("cityAgg") .field("city") .size(100) ); request.source().aggregation(AggregationBuilders .terms("starAgg") .field("starName") .size(100) ); } private List<String> getAggByName(Aggregations aggregations, String aggName) { // 4.1.根据聚合名称获取聚合结果 Terms brandTerms = aggregations.get(aggName); // 4.2.获取buckets List<? extends Terms.Bucket> buckets = brandTerms.getBuckets(); // 4.3.遍历 List<String> brandList = new ArrayList<>(); for (Terms.Bucket bucket : buckets) { // 4.4.获取key String key = bucket.getKeyAsString(); brandList.add(key); } return brandList; }
2.自动补全
当用户在搜索框输入字符时,我们应该提示出与该字符有关的搜索项,如图:
这种根据用户输入的字母,提示完整词条的功能,就是自动补全了。因为需要根据拼音字母来推断,因此要用到拼音分词功能。
2.1.拼音分词器
要实现根据字母做补全,就必须对文档按照拼音分词。在GitHub上恰好有elasticsearch的拼音分词插件。地址:https://github.com/medcl/elasticsearch-analysis-pinyin。
安装方式与IK分词器一样,分三步:
①解压(课程资料已做,无需在做)
②上传到虚拟机中,elasticsearch的plugin目录
- 执行下述指令,会发现存储路径: "Mountpoint": "/var/lib/docker/volumes/es-plugins/_data"
docker volume inspect es-plugins
- 将py文件夹整个拖拽进去
③重启elasticsearch:docker restart es
④测试
详细安装步骤可以参考IK分词器的安装过程。测试用法如下:
POST /_analyze { "text": "如家酒店还不错", "analyzer": "pinyin" }
结果:
2.2.自定义分词器
默认的拼音分词器会将每个汉字单独分为拼音,而我们希望的是每个词条形成一组拼音,需要对拼音分词器做个性化定制,形成自定义分词器。elasticsearch中分词器(analyzer)的组成包含三部分:
- character filters:在tokenizer之前对文本进行处理。例如删除字符、替换字符
- tokenizer:将文本按照一定的规则切割成词条(term)。例如keyword,就是不分词;还有ik_smart
- tokenizer filter:将tokenizer输出的词条做进一步处理。例如大小写转换、同义词处理、拼音处理等
文档分词时会依次由这三部分来处理文档:
声明自定义分词器的语法如下:
PUT /test { "settings": { "analysis": { "analyzer": { // 自定义分词器 "my_analyzer": { // 分词器名称 "tokenizer": "ik_max_word", "filter": "py" } }, "filter": { // 自定义tokenizer filter "py": { // 过滤器名称 "type": "pinyin", // 过滤器类型,这里是pinyin "keep_full_pinyin": false, "keep_joined_full_pinyin": true, "keep_original": true, "limit_first_letter_length": 16, "remove_duplicated_term": true, "none_chinese_pinyin_tokenize": false } } } }, "mappings": { "properties": { "name": { "type": "text", "analyzer": "my_analyzer", "search_analyzer": "ik_smart" } } } }
测试(测试时候需要加上上述的索引库名称):
总结:
如何使用拼音分词器?
- ①下载pinyin分词器
- ②解压并放到elasticsearch的plugin目录
- ③重启即可
如何自定义分词器?
- ①创建索引库时,在settings中配置,可以包含三部分
- ②character filter
- ③tokenizer
- ④filter
拼音分词器注意事项?
- 为了避免搜索到同音字,搜索时不要使用拼音分词器
2.3.自动补全查询
elasticsearch提供了Completion Suggester查询来实现自动补全功能。这个查询会匹配以用户输入内容开头的词条并返回。为了提高补全查询的效率,对于文档中字段的类型有一些约束:
- 参与补全查询的字段必须是completion类型。
- 字段的内容一般是用来补全的多个词条形成的数组。
比如,一个这样的索引库:
// 创建索引库 PUT test { "mappings": { "properties": { "title":{ "type": "completion" } } } }
然后插入下面的数据:
// 示例数据 POST test/_doc { "title": ["Sony", "WH-1000XM3"] } POST test/_doc { "title": ["SK-II", "PITERA"] } POST test/_doc { "title": ["Nintendo", "switch"] }
查询的DSL语句如下:
// 自动补全查询 GET /test/_search { "suggest": { "title_suggest": { "text": "s", // 关键字 "completion": { "field": "title", // 补全查询的字段 "skip_duplicates": true, // 跳过重复的 "size": 10 // 获取前10条结果 } } } }
2.4.实现酒店搜索框自动补全
现在,我们的hotel索引库还没有设置拼音分词器,需要修改索引库中的配置。但是我们知道索引库是无法修改的,只能删除然后重新创建。另外我们需要添加一个字段,用来做自动补全,将brand、address、city等都放进去,作为自动补全的提示。
因此,总结一下,我们需要做的事情包括:
- 修改hotel索引库结构,设置自定义拼音分词器
- 修改索引库的name、all字段,使用自定义分词器
- 索引库添加一个新字段suggestion,类型为completion类型,使用自定义的分词器
- 给HotelDoc类添加suggestion字段,内容包含brand、business
- 重新导入数据到hotel库
2.4.1.修改酒店映射结构
- 先删除原有的索引库:DELETE /hotel
- 再创建新的索引库信息,代码如下:
// 酒店数据索引库 PUT /hotel { "settings": { "analysis": { "analyzer": { "text_anlyzer": { "tokenizer": "ik_max_word", "filter": "py" }, "completion_analyzer": { "tokenizer": "keyword", "filter": "py" } }, "filter": { "py": { "type": "pinyin", "keep_full_pinyin": false, "keep_joined_full_pinyin": true, "keep_original": true, "limit_first_letter_length": 16, "remove_duplicated_term": true, "none_chinese_pinyin_tokenize": false } } } }, "mappings": { "properties": { "id":{ "type": "keyword" }, "name":{ "type": "text", "analyzer": "text_anlyzer", "search_analyzer": "ik_smart", "copy_to": "all" }, "address":{ "type": "keyword", "index": false }, "price":{ "type": "integer" }, "score":{ "type": "integer" }, "brand":{ "type": "keyword", "copy_to": "all" }, "city":{ "type": "keyword" }, "starName":{ "type": "keyword" }, "business":{ "type": "keyword", "copy_to": "all" }, "location":{ "type": "geo_point" }, "pic":{ "type": "keyword", "index": false }, "all":{ "type": "text", "analyzer": "text_anlyzer", "search_analyzer": "ik_smart" }, "suggestion":{ "type": "completion", "analyzer": "completion_analyzer" } } } }
2.4.2.修改HotelDoc实体
HotelDoc中要添加一个字段,用来做自动补全,内容可以是酒店品牌、城市、商圈等信息。按照自动补全字段的要求,最好是这些字段的数组。因此我们在HotelDoc中添加一个suggestion字段,类型为List<String>,然后将brand、city、business等信息放到里面。
代码如下:
package cn.itcast.hotel.pojo; import lombok.Data; import lombok.NoArgsConstructor; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.List; @Data @NoArgsConstructor public class HotelDoc { private Long id; private String name; private String address; private Integer price; private Integer score; private String brand; private String city; private String starName; private String business; private String location; private String pic; private Object distance; private Boolean isAD; private List<String> suggestion; public HotelDoc(Hotel hotel) { this.id = hotel.getId(); this.name = hotel.getName(); this.address = hotel.getAddress(); this.price = hotel.getPrice(); this.score = hotel.getScore(); this.brand = hotel.getBrand(); this.city = hotel.getCity(); this.starName = hotel.getStarName(); this.business = hotel.getBusiness(); this.location = hotel.getLatitude() + ", " + hotel.getLongitude(); this.pic = hotel.getPic(); // 组装suggestion if(this.business.contains("/")){ // business有多个值,需要切割 String[] arr = this.business.split("/"); // 添加元素 this.suggestion = new ArrayList<>(); this.suggestion.add(this.brand); Collections.addAll(this.suggestion, arr); }else { this.suggestion = Arrays.asList(this.brand, this.business); } } }
2.4.3.重新导入
重新执行之前编写的导入数据功能,可以看到新的酒店数据中包含了suggestion:
2.4.4.自动补全查询的JavaAPI
之前我们学习了自动补全查询的DSL,而没有学习对应的JavaAPI,这里给出一个示例:
而自动补全的结果也比较特殊,解析的代码如下:
2.4.5.实现搜索框自动补全
查看前端页面,可以发现当我们在输入框键入时,前端会发起ajax请求:
返回值是补全词条的集合,类型为List<String>
1)在cn.itcast.hotel.web包下的HotelController中添加新接口,接收新的请求:
@GetMapping("suggestion") public List<String> getSuggestions(@RequestParam("key") String prefix) { return hotelService.getSuggestions(prefix); }
2)在cn.itcast.hotel.service包下的IhotelService中添加方法:
List<String> getSuggestions(String prefix);
3)在cn.itcast.hotel.service.impl.HotelService中实现该方法:
@Override public List<String> getSuggestions(String prefix) { try { // 1.准备Request SearchRequest request = new SearchRequest("hotel"); // 2.准备DSL request.source().suggest(new SuggestBuilder().addSuggestion( "suggestions", SuggestBuilders.completionSuggestion("suggestion") .prefix(prefix) .skipDuplicates(true) .size(10) )); // 3.发起请求 SearchResponse response = client.search(request, RequestOptions.DEFAULT); // 4.解析结果 Suggest suggest = response.getSuggest(); // 4.1.根据补全查询名称,获取补全结果 CompletionSuggestion suggestions = suggest.getSuggestion("suggestions"); // 4.2.获取options List<CompletionSuggestion.Entry.Option> options = suggestions.getOptions(); // 4.3.遍历 List<String> list = new ArrayList<>(options.size()); for (CompletionSuggestion.Entry.Option option : options) { String text = option.getText().toString(); list.add(text); } return list; } catch (IOException e) { throw new RuntimeException(e); } }
3.数据同步
elasticsearch中的酒店数据来自于mysql数据库,因此mysql数据发生改变时,elasticsearch也必须跟着改变,这个就是elasticsearch与mysql之间的数据同步。
3.1.思路分析
常见的数据同步方案有三种:
- 同步调用
- 异步通知
- 监听binlog
3.1.1.同步调用
方案一:同步调用
基本步骤如下:
- hotel-demo对外提供接口,用来修改elasticsearch中的数据
- 酒店管理服务在完成数据库操作后,直接调用hotel-demo提供的接口,
3.1.2.异步通知
方案二:异步通知
流程如下:
- hotel-admin对mysql数据库数据完成增、删、改后,发送MQ消息
- hotel-demo监听MQ,接收到消息后完成elasticsearch数据修改
3.1.3.监听binlog
方案三:监听binlog
流程如下:
- 给mysql开启binlog功能
- mysql完成增、删、改操作都会记录在binlog中
- hotel-demo基于canal监听binlog变化,实时更新elasticsearch中的内容
3.1.4.选择
方式一:同步调用
- 优点:实现简单,粗暴
- 缺点:业务耦合度高
方式二:异步通知
- 优点:低耦合,实现难度一般
- 缺点:依赖mq的可靠性
方式三:监听binlog
- 优点:完全解除服务间耦合
- 缺点:开启binlog增加数据库负担、实现复杂度高
3.2.实现数据同步
3.2.1.思路
利用课前资料提供的hotel-admin项目作为酒店管理的微服务。当酒店数据发生增、删、改时,要求对elasticsearch中数据也要完成相同操作。
步骤:
- 导入课前资料提供的hotel-admin项目,启动并测试酒店数据的CRUD
- 声明exchange、queue、RoutingKey
- 在hotel-admin中的增、删、改业务中完成消息发送
- 在hotel-demo中完成消息监听,并更新elasticsearch中数据
- 启动并测试数据同步功能
3.2.2.导入demo
导入提供的hotel-admin项目:📎hotel-admin.zip,运行后,访问 http://localhost:8099
其中包含了酒店的CRUD功能:
如果新增失败,控制台提示的是:
请修改表结构让其主键自增
alter table tb_hotel modify id bigint auto_increment comment '酒店id';
3.2.3.声明交换机、队列
MQ结构如图:
1)引入依赖
在hotel-admin、hotel-demo中引入rabbitmq的依赖:
<!--amqp--> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-amqp</artifactId> </dependency>
- 引入配置项(注意修改自己的ip等信息)
spring: rabbitmq: host: 192.168.206.130 port: 5672 virtual-host: / username: itcast password: 123321
2)声明队列交换机名称
在hotel-admin和hotel-demo中的cn.itcast.hotel.constatnts包下新建一个类MqConstants:
package cn.itcast.hotel.constatnts; public class MqConstants { /** * 交换机 */ public final static String HOTEL_EXCHANGE = "hotel.topic"; /** * 监听新增和修改的队列 */ public final static String HOTEL_INSERT_QUEUE = "hotel.insert.queue"; /** * 监听删除的队列 */ public final static String HOTEL_DELETE_QUEUE = "hotel.delete.queue"; /** * 新增或修改的RoutingKey */ public final static String HOTEL_INSERT_KEY = "hotel.insert"; /** * 删除的RoutingKey */ public final static String HOTEL_DELETE_KEY = "hotel.delete"; }
3)声明队列交换机
在hotel-demo中,定义配置类,声明队列、交换机:
package cn.itcast.hotel.config; import cn.itcast.hotel.constants.MqConstants; import org.springframework.amqp.core.Binding; import org.springframework.amqp.core.BindingBuilder; import org.springframework.amqp.core.Queue; import org.springframework.amqp.core.TopicExchange; import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration; @Configuration public class MqConfig { @Bean public TopicExchange topicExchange(){ return new TopicExchange(MqConstants.HOTEL_EXCHANGE, true, false); } @Bean public Queue insertQueue(){ return new Queue(MqConstants.HOTEL_INSERT_QUEUE, true); } @Bean public Queue deleteQueue(){ return new Queue(MqConstants.HOTEL_DELETE_QUEUE, true); } @Bean public Binding insertQueueBinding(){ return BindingBuilder.bind(insertQueue()).to(topicExchange()).with(MqConstants.HOTEL_INSERT_KEY); } @Bean public Binding deleteQueueBinding(){ return BindingBuilder.bind(deleteQueue()).to(topicExchange()).with(MqConstants.HOTEL_DELETE_KEY); } }
3.2.4.发送MQ消息
- 发送之前务必确认MQ是否启动(先启动MQ再启动工程,才可以完成队列的注册)
- 在hotel-admin中的增、删、改业务中分别发送MQ消息:
- 注意原有的save改成insert,获取里面返回的ID值,用作后续的消息发送
- Hotel类的ID生成策略:@TableId(type = IdType.AUTO)
- 数据库ID需要改成自增
- 以上三个都完成,才可以实现insert方法有id返回(并非唯一的方法)
package cn.itcast.hotel.web; import cn.itcast.hotel.constants.MqConstants; import cn.itcast.hotel.mapper.HotelMapper; import cn.itcast.hotel.pojo.Hotel; import cn.itcast.hotel.pojo.PageResult; import cn.itcast.hotel.service.IHotelService; import com.baomidou.mybatisplus.extension.plugins.pagination.Page; import org.springframework.amqp.rabbit.core.RabbitTemplate; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.web.bind.annotation.*; import java.security.InvalidParameterException; @RestController @RequestMapping("hotel") public class HotelController { @Autowired private IHotelService hotelService; @Autowired private RabbitTemplate rabbitTemplate; @Autowired private HotelMapper hotelMapper; @GetMapping("/{id}") public Hotel queryById(@PathVariable("id") Long id){ return hotelService.getById(id); } @GetMapping("/list") public PageResult hotelList( @RequestParam(value = "page", defaultValue = "1") Integer page, @RequestParam(value = "size", defaultValue = "1") Integer size ){ Page<Hotel> result = hotelService.page(new Page<>(page, size)); return new PageResult(result.getTotal(), result.getRecords()); } @PostMapping public void saveHotel(@RequestBody Hotel hotel){ hotelMapper.insert(hotel); // 消息发送 rabbitTemplate.convertAndSend(MqConstants.HOTEL_TOPIC, MqConstants.INSERT_KEY, hotel.getId()); } @PutMapping() public void updateById(@RequestBody Hotel hotel){ if (hotel.getId() == null) { throw new InvalidParameterException("id不能为空"); } hotelService.updateById(hotel); // 消息发送 rabbitTemplate.convertAndSend(MqConstants.HOTEL_TOPIC, MqConstants.INSERT_KEY, hotel.getId()); } @DeleteMapping("/{id}") public void deleteById(@PathVariable("id") Long id) { hotelService.removeById(id); // 消息发送 rabbitTemplate.convertAndSend(MqConstants.HOTEL_TOPIC, MqConstants.DELETE_KEY, id); } }
- 启动工程,去浏览器验证一下是否有对应的交换机、队列、及绑定关系
3.2.5.接收MQ消息
hotel-demo接收到MQ消息要做的事情包括:
- 新增消息:根据传递的hotel的id查询hotel信息,然后新增一条数据到索引库
- 删除消息:根据传递的hotel的id删除索引库中的一条数据
1)首先在hotel-demo的cn.itcast.hotel.service包下的IHotelService中新增新增、删除业务
void deleteById(Long id); void insertById(Long id);
2)给hotel-demo中的cn.itcast.hotel.service.impl包下的HotelService中实现业务:
@Override public void deleteById(Long id) { try { // 1.准备Request(注意这里id是写在request对象中的) DeleteRequest request = new DeleteRequest("hotel", id.toString()); // 2.发送请求 client.delete(request, RequestOptions.DEFAULT); } catch (IOException e) { throw new RuntimeException(e); } } @Override public void insertById(Long id) { try { // 0.根据id查询酒店数据 Hotel hotel = getById(id); // 转换为文档类型 HotelDoc hotelDoc = new HotelDoc(hotel); // 1.准备Request对象 IndexRequest request = new IndexRequest("hotel").id(hotel.getId().toString()); // 2.准备Json文档 request.source(JSON.toJSONString(hotelDoc), XContentType.JSON); // 3.发送请求 client.index(request, RequestOptions.DEFAULT); } catch (IOException e) { throw new RuntimeException(e); } }
3)编写监听器
在hotel-demo中的cn.itcast.hotel.mq包新增一个类:
package cn.itcast.hotel.mq; import cn.itcast.hotel.constants.MqConstants; import cn.itcast.hotel.service.IHotelService; import org.springframework.amqp.rabbit.annotation.RabbitListener; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.stereotype.Component; @Component public class HotelListener { @Autowired private IHotelService hotelService; /** * 监听酒店新增或修改的业务 * @param id 酒店id */ @RabbitListener(queues = MqConstants.HOTEL_INSERT_QUEUE) public void listenHotelInsertOrUpdate(Long id){ hotelService.insertById(id); } /** * 监听酒店删除的业务 * @param id 酒店id */ @RabbitListener(queues = MqConstants.HOTEL_DELETE_QUEUE) public void listenHotelDelete(Long id){ hotelService.deleteById(id); } }
3.2.6.结果验证
修改后去kibana控制台可以查看到修改信息
GET /hotel182/_search { "query": { "term": { "id": { "value": "2062643521" } } } }
删除后去kibana查看数据没了(执行上述命令会发现hits中是0)