文档的分页查询

简介: MongoDB提供统计、分页与排序查询功能:`count()`统计记录数,支持条件筛选;`limit()`限制返回条数,`skip()`跳过指定数量,实现分页;`sort()`按字段升序(1)或降序(-1)排序。三者联合使用时,执行顺序为sort→skip→limit。

3.5.1 统计查询
统计查询使用count()方法,语法如下:
db.collection.count(query, options)
(1)统计所有记录数
统计comment集合的所有的记录数:
db.comment.count()
(2)按条件统计记录数
例如:统计userid为1003的记录条数
db.comment.count({userid:"1003"})
提示: 默认情况下 count() 方法返回符合条件的全部记录条数。
3.5.2 分页列表查询
可以使用limit()方法来读取指定数量的数据,使用skip()方法来跳过指定数量的数据。 基本语法如下所示:
db.COLLECTION_NAME.find().limit(NUMBER).skip(NUMBER)
如果你想返回指定条数的记录,可以在find方法后调用limit来返回结果(TopN),默认值20,例如:
db.comment.find().limit(3)
skip方法同样接受一个数字参数作为跳过的记录条数。(前N个不要),默认值是0
db.comment.find().skip(3)
分页查询:需求:每页2个,第二页开始:跳过前两条数据,接着值显示3和4条数据
//第一页
db.comment.find().skip(0).limit(2)
//第二页
db.comment.find().skip(2).limit(2)
//第三页
db.comment.find().skip(4).limit(2)
3.5.3 排序查询
sort() 方法对数据进行排序,sort() 方法可以通过参数指定排序的字段,并使用 1 和 -1 来指定排序的方式,其中 1 为升序排列,而 -1 是用于降序排列。
语法如下所示:
db.COLLECTION_NAME.find().sort({KEY:1})

db.集合名称.find().sort(排序方式)
例如:
对userid降序排列,并对访问量进行升序排列
db.comment.find().sort({userid:-1,likenum:1})
提示:
skip(), limilt(), sort()三个放在一起执行的时候,执行的顺序是先 sort(), 然后是 skip(),最后是显示的 limit(),和命令编写顺序无关。

相关文章
|
1天前
|
云安全 人工智能 算法
以“AI对抗AI”,阿里云验证码进入2.0时代
三层立体防护,用大模型打赢人机攻防战
1281 1
|
9天前
|
编解码 人工智能 自然语言处理
⚽阿里云百炼通义万相 2.6 视频生成玩法手册
通义万相Wan 2.6是全球首个支持角色扮演的AI视频生成模型,可基于参考视频形象与音色生成多角色合拍、多镜头叙事的15秒长视频,实现声画同步、智能分镜,适用于影视创作、营销展示等场景。
681 4
|
1天前
|
机器学习/深度学习 安全 API
MAI-UI 开源:通用 GUI 智能体基座登顶 SOTA!
MAI-UI是通义实验室推出的全尺寸GUI智能体基座模型,原生集成用户交互、MCP工具调用与端云协同能力。支持跨App操作、模糊语义理解与主动提问澄清,通过大规模在线强化学习实现复杂任务自动化,在出行、办公等高频场景中表现卓越,已登顶ScreenSpot-Pro、MobileWorld等多项SOTA评测。
466 2
|
2天前
|
人工智能 Rust 运维
这个神器让你白嫖ClaudeOpus 4.5,Gemini 3!还能接Claude Code等任意平台
加我进AI讨论学习群,公众号右下角“联系方式”文末有老金的 开源知识库地址·全免费
|
1天前
|
存储 弹性计算 安全
阿里云服务器4核8G收费标准和活动价格参考:u2a实例898.20元起,计算型c9a3459.05元起
现在租用阿里云服务器4核8G价格是多少?具体价格及配置详情如下:云服务器ECS通用算力型u2a实例,配备4核8G配置、1M带宽及40G ESSD云盘(作为系统盘),其活动价格为898.20元/1年起;此外,ECS计算型c9a实例4核8G配置搭配20G ESSD云盘,活动价格为3459.05元/1年起。在阿里云的当前活动中,4核8G云服务器提供了多种实例规格供用户选择,不同实例规格及带宽的组合将带来不同的优惠价格。本文为大家解析阿里云服务器4核8G配置的实例规格收费标准与最新活动价格情况,以供参考。
222 150
|
9天前
|
机器学习/深度学习 人工智能 前端开发
构建AI智能体:七十、小树成林,聚沙成塔:随机森林与大模型的协同进化
随机森林是一种基于决策树的集成学习算法,通过构建多棵决策树并结合它们的预测结果来提高准确性和稳定性。其核心思想包括两个随机性:Bootstrap采样(每棵树使用不同的训练子集)和特征随机选择(每棵树分裂时只考虑部分特征)。这种方法能有效处理大规模高维数据,避免过拟合,并评估特征重要性。随机森林的超参数如树的数量、最大深度等可通过网格搜索优化。该算法兼具强大预测能力和工程化优势,是机器学习中的常用基础模型。
350 164