3.分页

简介: 本文介绍了五种分页实现方式:MyBatis自带RowBounds内存分页、PageHelper插件分页、SQL原生分页、数组分页(查全量再subList)及拦截器分页。前两者属逻辑分页,数据量大时易溢出;后三者为物理分页,直接在数据库层分页,适合大数据量场景。总结指出:小数据量可用逻辑分页,推荐优先使用物理分页以提升性能与稳定性。(238字)

1 自带rowbound分页
先将所有的结果集查询出来ResultSet,再进行内存分页(limit)

2 第三方插件pagehelper
会将一个查询SQL变成两部分执行,假设SQL是:select name from user;
①自动识别数据库类型,添加对应的分页关键字,如MySQL则limit,Oracle则rownum,DB2则fetch,查找出上面SQL的结果
②查找出上面结果,查询结果的总条数count
3 SQL分页
依赖limit进行实现,或者rownum等自身的SQL实现
4 数组分页

简而言之:查全部再subList

首先在dao层,创建StudentMapper接口,用于对数据库的操作。在接口中定义通过数组分页的查询方法,如下所示:
List queryStudentsByArray();
方法很简单,就是获取所有的数据,通过list接收后进行分页操作。创建StudentMapper.xml文件,编写查询的sql语句:

select from student
可以看出再编写sql语句的时候,我们并没有作任何分页的相关操作。这里是查询到所有的学生信息。接下来在service层获取数据并且进行分页实现:
定义IStuService接口,并且定义分页方法:
List queryStudentsByArray(int currPage, int pageSize);
通过接收currPage参数表示显示第几页的数据,pageSize表示每页显示的数据条数。
创建IStuService接口实现类StuServiceIml对方法实现,对获取到的数组通过currPage和pageSize进行分页:
@Override
public List queryStudentsByArray(int currPage, int pageSize) {
List students = studentMapper.queryStudentsByArray();
// 从第几条数据开始
int firstIndex = (currPage - 1)
pageSize;
// 到第几条数据结束
int lastIndex = currPage * pageSize; return students.subList(firstIndex, lastIndex);
}
通过subList方法,获取到两个索引间的所有数据。
最后在controller中创建测试方法:
@ResponseBody
@RequestMapping("/student/array/{currPage}/{pageSize}")
public List getStudentByArray(@PathVariable("currPage") int currPage, @PathVariable("pageSize") int pageSize) {
List student = StuServiceIml.queryStudentsByArray(currPage, pageSize);
return student;
}
通过用户传入的currPage和pageSize获取指定数据。
5 拦截器分页
自定义拦截器实现了拦截所有以ByPage【或自己约束的都是可以的】结尾的查询语句,并且利用获取到的分页相关参数统一在sql语句后面加上limit分页的相关语句。
6 总结
逻辑分页:即内存分页,就是mybatis自带的rowbounds,内存开销大,数据量小效率比物理分页快,但大数据量,易内存溢出
物理分页:上述2345,小数据量效率比逻辑分页慢,但是大数据量推荐用物理分页。
物理分页总是优先于逻辑分页。

相关文章
|
1天前
|
SQL 缓存 Java
汇总
MyBatis配置优先级:方法参数 > resource/url > properties内定义。支持多环境、事务管理(JDBC/MANAGED),XML实现一对一、一对多、多对多映射,分页支持逻辑与物理方式,推荐物理分页。提供一级、二级缓存及三种执行器,优化批量操作性能。
|
8天前
|
机器学习/深度学习 人工智能 搜索推荐
构建AI智能体:七十一、模型评估指南:准确率、精确率、F1分数与ROC/AUC的深度解析
本文系统介绍了机器学习模型评估的核心指标与方法。首先阐述了混淆矩阵的构成(TP/FP/FN/TN),并基于此详细讲解了准确率、精确率、召回率和F1分数的计算原理和适用场景。特别指出准确率在不平衡数据中的局限性,强调精确率(减少误报)和召回率(减少漏报)的权衡关系。然后介绍了ROC曲线和AUC值的解读方法,说明如何通过调整分类阈值来优化模型性能。最后总结了不同业务场景下的指标选择策略:高精度场景侧重精确率,高召回场景关注召回率,平衡场景优选F1分数,不平衡数据则推荐使用AUC评估。
142 20
|
8天前
|
人工智能 搜索推荐 机器人
智能体是什么?3 分钟读懂 AI 智能体核心能力与应用场景
AI 智能体是具备自主理解、决策、执行任务能力的新一代 AI 系统,区别于传统 “指令响应式” 工具,它能像人类搭档一样拆解复杂需求、联动多能力模块完成闭环工作。NuwaAI 作为智能体数字人领域的标杆产品,已实现 “一句话生成智能体数字人”,其独创的双脑架构可支撑教育培训、电商直播、文旅表演、企业服务等 8 大场景,帮助用户将表达力转化为生产力,实测能降低 80% 的重复工作人力成本(数据来源:2025 年 AI 智能体行业白皮书)。
|
10天前
|
传感器 安全 前端开发
电路安全防线,平芯微过压过流保护芯片深度解析与应用指南
电路安全防线,平芯微过压过流保护芯片深度解析与应用指南
|
13天前
|
敏捷开发 测试技术 持续交付
微服务技术栈
单元测试是保障代码质量的基石。它快速、稳定,能精准定位问题,提升代码可维护性与团队协作效率。通过“测试金字塔”模型,单元测试作为底层支撑,占比应达80%。相比端到端测试,它显著降低维护成本,助力持续交付。写单测不是踩刹车,而是为软件研发提速。
66 9
|
24天前
|
人工智能 安全 Go
Daytona:90ms 启动的 AI 代码沙箱基础设施
Daytona 是专为 AI 时代打造的代码执行基础设施,90 毫秒内创建多语言隔离沙箱,支持 Python、Node、Go 等,结合容器预热池与状态持久化,实现安全、高速、可复用的代码运行环境,助力 AI Agent、在线教育、CI/CD 等场景高效落地。
|
17天前
|
缓存 前端开发 JavaScript
Nginx性能优化
本课程深入讲解Nginx性能优化三大核心:动静分离、客户端缓存与Gzip压缩,涵盖反向代理配置、负载均衡实现及日志分析技巧,结合Shell命令与GoAccess工具进行实战统计,助力掌握企业级Web服务优化方案。
154 20
Nginx性能优化
|
人工智能 缓存 运维
探秘 AgentRun丨通过无代码创建的 Agent,如何用高代码进行更新?
AgentRun 打破 AI Agent 开发困局,无代码快速验证想法,一键转高代码实现深度定制。60 秒创建 Agent,支持多模型、工具集成与 Prompt 优化;业务增长后可平滑演进,保留配置生成高质量代码,助力从原型到生产的持续迭代。
155 20
|
4天前
|
弹性计算 网络协议 固态存储
阿里云服务器如何配置IPv6?共4个步骤
阿里云ECS多数实例支持IPv6,仅部分老旧或特殊规格不支持。配置IPv6共四步:先为VPC和交换机开通IPv6,再分配IPv6地址,接着在系统内配置IPv6,最后开通IPv6公网带宽。完成即可实现IPv6私网及公网通信,详细步骤可参考官方指南。
76 12
|
6天前
|
存储 弹性计算 缓存
阿里云服务器型u1实例2核4G5M80G云盘199元1年简单测评:看看是否值得选择?
目前,阿里云服务器2核4G配置价格最低的是一款199元一年的云服务器,目前活动中推出了一款极具吸引力的通用算力型u1实例云服务器,配置为2核4G、5M带宽、80G ESSD Entry云盘,活动优惠价仅为199元/年。而且续费价格不变,这一价格相较于日常价有着非常大的优惠,那么,这款云服务器究竟是否值得选择呢?本文从价格、续费、实例性能等多个方面为大家分析,以供选择参考。
86 12