不过,需要注意的是,系统调用过程中,并不会涉及到虚拟内存等进程用户态的资源,也不会切换进程。这跟我们通常所说的进程上下文切换是不一样的:
- 进程上下文切换,是指从一个进程切换到另一个进程运行。
- 系统调用过程中一直是同一个进程在运行。
那么,进程上下文切换跟系统调用又有什么区别呢?首先,你需要知道,进程是由内核来管理和调度的,进程的切换只能发生在内核态。所以,进程的上下文不仅包括了虚拟内存、栈、全局变量等用户空间的资源,还包括了内核堆栈、寄存器等内核空间的状态。因此,进程的上下文切换就比系统调用时多了一步:在保存当前进程的内核状态和 CPU 寄存器之前,需要先把该进程的虚拟内存、栈等保存下来;而加载了下一进程的内核态后,还需要刷新进程的虚拟内存和用户栈。
保存上下文和恢复上下文的过程并不是“免费”的,需要内核在 CPU 上运行才能完成。
每次上下文切换都需要几十纳秒到数微秒的 CPU 时间。这个时间还是相当可观的,特别是在进程上下文切换次数较多的情况下,很容易导致 CPU 将大量时间耗费在寄存器、内核栈以及虚拟内存等资源的保存和恢复上,进而大大缩短了真正运行进程的时间。Linux 通过 TLB(Translation Lookaside Buffer)来管理虚拟内存到物理内存的映射关系。当虚拟内存更新后,TLB 也需要刷新,内存的访问也会随之变慢。特别是在多处理器系统上,缓存是被多个处理器共享的,刷新缓存不仅会影响当前处理器的进程,还会影响共享缓存的其他处理器的进程。
TLB,这个东西的资料比较晦涩难懂,我大致搜了一下,非常多的专业术语,不太建议大家展开了,等到我们真的要用上的时候,再去了解也不晚,大致内容我觉得如果要展开,那就展开我下面的这个部分就已经足够了。
TLB是一种高速缓存,内存管理硬件使用它来改善虚拟地址到物理地址的转换速度。当前所有的个人桌面,笔记本和服务器处理器都使用TLB来进行虚拟地址到物理地址的映射。使用TLB内核可以快速的找到虚拟地址指向物理地址,而不需要请求RAM内存获取虚拟地址到物理地址的映射关系。
虚拟地址和物理地址的话,大致是这么理解的。每个进程都有自己独立的4G内存空间,各个进程的内存空间具有类似的结构。一个新进程建立的时候,将会建立起自己的内存空间,此进程的数据,代码等从磁盘拷贝到自己的进程空间,哪些数据在哪里,都由进程控制表中的task_struct记录,它会有一条链表,记录中内存空间的分配情况,哪些地址有数据,哪些地址无数据,哪些可读,哪些可写,都可以通过这个链表记录。每个进程已经分配的内存空间,都与对应的磁盘空间映射
可是计算机明明没有那么多内存(n个进程的话就需要n*4G)内存。还有建立一个进程,就要把磁盘上的程序文件拷贝到进程对应的内存中去,对于一个程序对应的多个进程这种情况是根本不需要这样操作的。
知道了进程上下文切换潜在的性能问题后,我们再来看,究竟什么时候会切换进程上下文。显然,只有在进程调度的时候,才需要切换上下文。Linux 为每个 CPU 都维护了一个就绪队列,将活跃进程(即正在运行和正在等待 CPU 的进程)按照优先级和等待 CPU 的时间排序,然后选择最需要 CPU 的进程,也就是优先级最高和等待 CPU 时间最长的进程来运行。
那么,进程在什么时候才会被调度到 CPU 上运行呢?最容易想到的一个时机,就是进程执行完终止了,它之前使用的 CPU 会释放出来,这个时候再从就绪队列里,拿一个新的进程过来运行。其实还有很多其他场景,也会触发进程调度,在这里我给你逐个梳理下。
其一,为了保证所有进程可以得到公平调度,CPU 时间被划分为一段段的时间片,这些时间片再被轮流分配给各个进程。这样,当某个进程的时间片耗尽了,就会被系统挂起,切换到其它正在等待 CPU 的进程运行。
其二,进程在系统资源不足(比如内存不足)时,要等到资源满足后才可以运行,这个时候进程也会被挂起,并由系统调度其他进程运行。
其三,当进程通过 sleep 这样的方法将自己主动挂起时,自然也会重新调度。
其四,当有优先级更高的进程运行时,为了保证高优先级进程的运行,当前进程会被挂起,由高优先级进程来运行。
最后一个,发生硬件中断时,CPU 上的进程会被中断挂起,转而执行内核中的中断服务程序。