模型压缩与量化

简介: 模型压缩通过量化、稀疏化、知识蒸馏等技术,减小模型体积与计算开销,助力大模型在端侧部署。涵盖INT8/INT4、GPTQ、SmoothQuant等方法,平衡压缩比、精度与速度,并支持实战量化加载,提升推理效率。

🎯 概述
模型压缩通过减少模型大小和计算量,使大模型能够在资源受限的环境中部署。
🏗️ 压缩技术
1️⃣ 权重量化
● INT8量化:将FP32权重压缩到INT8,4倍压缩
● INT4量化:进一步压缩到4位,8倍压缩
● GPTQ:基于二阶信息的量化方法
2️⃣ 激活量化
● 动态量化:运行时量化激活值
● 静态量化:校准数据集预计算量化参数
● SmoothQuant:解决激活异常值问题
3️⃣ 稀疏化
● 非结构化稀疏:随机权重置零
● 结构化稀疏:通道/块级稀疏
● N:M稀疏:每M个权重保留N个
4️⃣ 知识蒸馏
● 量化感知蒸馏:结合量化和蒸馏
● 渐进式量化:逐步降低精度
📊 量化方法对比
方法 压缩比 精度损失 推理速度 实现难度
INT8 4x <1% 2-3x 低
INT4 8x 1-3% 3-4x 中
GPTQ 8x <1% 3-4x 中
AWQ 8x <0.5% 3-4x 中
🎯 实战代码

使用bitsandbytes进行量化

import torch
from transformers import AutoModelForCausalLM, BitsAndBytesConfig

INT4量化配置

bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)

加载量化模型

model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-2-7b-hf",
quantization_config=bnb_config,
device_map="auto"
)
剪枝
🎯 面试重点

  1. INT8和INT4量化的区别?
  2. 如何解决量化后的精度损失?
  3. GPTQ和AWQ的算法原理?
  4. 量化对推理速度的影响?
相关文章
|
1天前
|
缓存 算法 C++
模型推理加速
大模型推理加速关键技术:KV-Cache优化、连续批处理、投机解码、模型并行与vLLM等。涵盖原理、内存计算、优化策略及实战,助力高效部署与面试备战。
|
16天前
|
人工智能 安全 搜索推荐
杭州AI开源生态大会·魔搭社区开发者嘉年华全回顾
11月22日,杭州AI开源生态大会暨“魔搭社区”开发者中心启用仪式在云谷中心举行。大会汇聚超3000名开发者,发布“两张清单”与AI开源政策包,启用首个线下开发者空间,推动开放、共建、共创的AI生态发展。
230 10
|
18天前
|
人工智能 JSON 自然语言处理
2025年测试工程师的核心竞争力:会用Dify工作流编排AI测试智能体
测试工程师正从脚本执行迈向质量策略设计。借助Dify等AI工作流平台,可编排“AI测试智能体”,实现用例生成、语义校验、自动报告等全流程自动化,应对AI应用的动态与不确定性,构建智能化、可持续集成的测试新体系。
|
2月前
|
Web App开发 数据可视化 前端开发
当Dify遇见Selenium:可视化编排UI自动化测试,原来如此简单
Dify与Selenium融合,打造可视化UI自动化测试新范式。无需编码,通过拖拽构建复杂测试流程,降低技术门槛,提升协作效率。智能元素定位、自适应等待、视觉验证等特性显著增强测试稳定性与维护性,结合CI/CD实现高效回归,推动测试智能化演进。
|
1月前
|
人工智能 数据可视化 测试技术
提升测试效率5倍!Dify驱动的可视化工作流实现自动化测试“开箱即用”
本文介绍如何利用Dify可视化工作流快速构建自动化测试体系,涵盖用例生成、API测试和UI测试等核心场景。通过拖拽式设计降低技术门槛,显著提升测试效率与覆盖率,助力团队实现质量保障的智能化转型。
|
1天前
|
存储 机器学习/深度学习 编解码
预训练技巧
预训练是大模型的核心基础,涵盖混合精度、分布式训练、ZeRO优化、FlashAttention等关键技术,通过高效计算与显存优化,实现大规模模型的快速稳定训练。
|
1天前
|
自然语言处理
主流大模型结构
本文介绍了四大模型架构:Encoder-Decoder、Decoder-Only、Encoder-Only和Prefix-Decoder,涵盖代表模型与应用场景。详解GPT系列演进、LLaMA发展及主流中文大模型,并对比GPT-4、LLaMA-3、Qwen等在架构、参数量与上下文长度等方面的异同。
|
1天前
|
机器学习/深度学习 自然语言处理 算法
主流分词算法
分词器将文本转为模型可处理的数字序列,主流算法有BPE、WordPiece和SentencePiece。BPE高效但中文支持弱;WordPiece用于BERT,适合英文;SentencePiece语言无关,支持中文。实战中需根据语言选择算法,并合理设置词汇表大小与特殊标记,解决OOV等问题。
|
1天前
|
机器学习/深度学习 自然语言处理 算法
分词器详解
分词器将文本转为模型可处理的数字序列,主流算法有BPE、WordPiece和SentencePiece。BPE高效但中文支持弱;WordPiece用于BERT,适合英文;SentencePiece语言无关,支持中日文。实战中常用SentencePiece处理中文,Hugging Face工具处理英文。面试需掌握算法差异、中文分词策略、词汇表设计及OOV问题解决。
|
1天前
|
机器学习/深度学习 自然语言处理 网络架构
Transformer基础结构
Transformer是Vaswani等人于2017年提出的基于注意力机制的神经网络,彻底革新了自然语言处理。其核心为编码器-解码器架构,通过自注意力并行捕捉长距离依赖,结合位置编码、残差连接与层归一化,显著提升训练效率与模型性能,广泛应用于各类NLP任务。(238字)