如何做好SQL质量监控

简介: SLS推出SQL质量监控功能,集成于CloudLens for SLS,从健康分、服务指标、运行明细、SQL Pattern及优化建议五大维度,助力用户全面掌握SQL使用情况,提升查询效率与资源管理能力。

如何做好SQL质量监控
背景
Cloud Native
在 SLS 中,用户可以通过 SQL 对日志数据(结构化、半结构化、无结构化)进行查询和分析。随着用户对 SQL 使用程度的不断加深,越来越多的用户希望了解自己使用 SQL 分析时的服务反馈(如请求量、成功率、数据量等等),以便对数据和分析行为进行精细管理或优化治理。
“现在我这个 Project 的 SQL 并发是多少?”
“奇怪,我 SQL 请求并不多,为什么会有这么多 SQL 请求,是哪个业务线(Logstore)用的?”
“我想了解我在 SLS 中使用 SQL 分析的整体情况,请问有什么监控数据或日志可以查看?
这些都是来自 SLS 真实用户的声音,可以看出用户对于自身 SQL 分析行为的监控和质量管理有着较强的需求。
为了提升用户 SLS SQL 的使用体验,我们提供了用户级 SQL 质量监控功能,希望能够帮助用户直观、清晰地了解自身使用 SQL 的情况。
通过 CloudLens 开启使用
Cloud Native
我们将此功能集成于 CloudLens for SLS中,用户可以轻松开启该服务,并对 SQL 质量进行监控和管理。除此之外,CloudLens for SLS 还帮助您监控和管理所有 SLS 相关资源(包括采集接入、读写操作、作业、配额、SQL、计费等等),以提升您对日志服务资产的管理效率、快速了解其消耗情况。
服务开启后按照引导开通全局日志,数据同步可能需要一定时间(首次开启大约 10min),请耐心等待,随后在「报表中心 / SQL 质量监控」中即可查看完整 SQL 质量监控。
功能总览
Cloud Native
总体上,我们为用户提供了 5 个维度的 SQL 质量监控:
SQL 健康分和使用报告主要展示用户整体使用 SQL 的健康度和总体情况(包含一些很有意思的指标)。
SQL 服务指标主要描述用户使用 SQL 时的整体服务情况,以便用户对服务现状有整体了解。
SQL 运行指标主要描述 SQL 内部运行时的指标,以便用户了解自身 SQL 的实际处理表现和吞吐。
SQL Pattern主要刻画用户提交的 SQL 范式(根据 SLS 原生 sql parse 解析并去除参数差异),以便用户识别出具有相同特征的分析业务,做相关管理和监控。
SQL 质量优化和建议主要描述 SQL 请求的服务质量,包括用户侧错误,给出相关建议,推荐用户进行优化改善。
关于指标的说明:
所有指标以分钟为粒度,根据以下 4 个基础字段(Category 除外)作为分组维度,聚合分析计算得出。
所有指标目前不包含 JDBC 接入和 ScheduledSQL 的流量请求。
所有指标为当前状态,随产品形态和系统发展,未来可能增减指标,以帮助用户更明确的反馈服务情况。
所有指标的解释权归 SLS 所有。
SQL 健康分和使用报告
Cloud Native
通过「SQL 健康分」,反馈用户使用 SLS SQL 服务的总体质量,进而驱动用户去做服务治理和质量优化。
UserStory:很多时候,用户在使用 SQL 的过程中,常常由于 AK 失效/授权过期/索引未建立 / SQL 语法错误等各种客观原因,而发起了大量的无效 SQL 请求,不仅占用了 SQL 请求并发配额,对于用户自身服务器资源也是无效的消耗。通过 SQL 健康分,用户可以一目了然了解自己使用 SLS SQL 的健康情况,并进行针对的优化或者治理。
同时,我们提供了一份用户最近的「SQL 使用报告」。在这里,用户可以从全局视角看到当前账户下使用 SQL 的活跃 Project、活跃 Logstore、SQL 请求量、常用请求代理、SQL 整体表现(包括延时、数据量、数据行数、返回行数、预估并发量等)
SQL 服务指标
Cloud Native
通过「SQL 服务指标」,用户可以了解自己使用 SQL 时更详细的服务质量,包括每分钟的请求 PV 数、平均延时、请求代理分布以及延时四分位的分布水平。
通过这些时序图的趋势展示,用户可以非常直观地了解自己在哪些时段出现过 SQL 请求量飙升或延时毛刺,以便辅助分析业务问题。将时间线拉长到 1 天,用户也可以了解到自己业务高峰一般处在 1 天中的什么时刻,延时毛刺是否与请求量相关等等。
SQL 运行明细指标
Cloud Native
通过「SQL 运行明细指标」,用户可以更进一步地了解当前 SQL 执行情况,包括并发请求(预估)、各阶段平均延时、每分钟的处理数据量和处理行数,以及细化到 Logstore 的 SQL 热力分布情况等等。
关于并发请求(预估)和各阶段平均延时的说明
首先,回答大家一个问题:为什么要有 SQL 并发控制?
SLS SQL 执行涉及到分布式计算,计算过程消耗较多算力资源,而我们的服务是面向云上多租用户的,为了保证资源的公平使用,我们为每个租户设置了合理的并发额度。
每个用户会配置 1 个并发队列和 1 个排队队列,当用户提交一条 SQL 时,会进行并发控制,若并发队列有空余,则直接运行;若并发队列满,则排队等待;若排队队列再满,则并发超限报错。
UserStory:有些用户当并发请求过高时,查询延时会有明显增高,这又是怎么回事呢?
其实,了解了上面的并发控制模型,就不难理解这一点:当一条 SQL 提交时,如果并发队列满,该 SQL 将在排队队列中等待,直到并发队列中最短的一条 SQL 执行完才能腾出空位来,这个时间间隔称为“QueuedTime(排队时间)”,所以,当出现排队时,SQL 端到端的总延时可能会增高,这其中包含了队列中等待在途 Query 完成的排队时间。
因此,为了让大家在日常使用过程中,更合理地使用并发,以及遇到并发超限时进行合理地优化处理,我们提供了并发请求(预估)和各阶段平均延时指标以供用户参考。
SQL Pattern 分析
Cloud Native
我们提供「SQL Pattern分析」视图,将 SQL 中的变量参数进行了泛化,提炼出 SQL 语义特征,用户可以据此了解哪些特征 SQL 请求占比特多、执行特慢、处理量特大等等。
UserStory:很多时候,用户提交的 SQL 是通过程序化方式以模板+参数的方式渲染生成最终 SQL 语句,有可能多条不同的 SQL 对应的其实是同一个业务,为了让用户能更加洞悉业务特征,快速识别出存在问题或异常的业务 SQL。
Plain Text
复制代码
1
String sql = String.format("* | SELECT sum(price) from log where category = %s", category_id);// request sql to sls...
质量优化和建议
Cloud Native
用户可以通过「质量优化和建议」了解到自己使用 SQL 的整体请求成功/失败占比、错误码的分布,我们还会给出具体的优化建议。
UserStory:很多时候,由于企业组织结构不同,在 SLS 上的资源可能分布在不同的团队,有可能运维部门负责资源的创建(如 Project/Logstore/索引),而数据部门负责数据的使用(如发起 SQL 请求),业务上的快速迭代和变化常常会导致某个 Logstore 已不存在、AK 失效、权限不足等,而数据部门却可能还一直在持续地发起大量的 SQL 请求,造成客户大量无效资源的消耗。这种情况下,各部门往往缺乏一个全局视角了解资源的整体使用情况和错误占比,我们通过优化建议可以让用户从全局视角了解到最需要优化和治理的方面,帮助提效。

目录
相关文章
|
存储 JSON 大数据
大数据离线数仓---金融审批数仓
大数据离线数仓---金融审批数仓
962 1
|
24天前
|
存储 SQL 搜索推荐
货拉拉用户画像基于 Apache Doris 的数据模型设计与实践
货拉拉基于Apache Doris构建高效用户画像系统,实现标签管理、人群圈选与行为分析的统一计算引擎,支持秒级响应与大规模数据导入,显著提升查询效率与系统稳定性,助力实时化、智能化运营升级。
149 14
货拉拉用户画像基于 Apache Doris 的数据模型设计与实践
|
5天前
|
Prometheus 分布式计算 监控
大数据指标和 SLA,那些你以为懂了其实没懂的事
大数据指标和 SLA,那些你以为懂了其实没懂的事
112 7
|
23天前
|
人工智能 前端开发 搜索推荐
为什么 LLM 搞不定复杂任务?ReAct 与 Reflexion 技术综述
ReAct与Reflexion是提升大语言模型处理复杂任务的关键框架。ReAct通过“推理+行动”循环,结合外部工具解决事实幻觉、信息滞后等问题;Reflexion在此基础上引入自我反思与评估机制,实现从错误中学习的闭环优化。二者结合显著增强了模型的规划、决策与自适应能力,推动AI在问答、编程、智能助手等领域的深度应用。
为什么 LLM 搞不定复杂任务?ReAct 与 Reflexion 技术综述
|
2月前
|
SQL 人工智能 运维
一场由AI拯救的数据重构之战
本文以数据研发工程师小D的日常困境为切入点,探讨如何借助AI技术提升数据研发效率。通过构建“数研小助手”智能Agent,覆盖需求评估、模型评审、代码开发、运维排查等全链路环节,结合大模型能力与内部工具(如图治MCP、D2 API),实现影响分析、规范检查、代码优化与问题定位的自动化,系统性解决传统研发中耗时长、协作难、维护成本高等痛点,推动数据研发向智能化跃迁。
263 29
一场由AI拯救的数据重构之战
|
3月前
|
设计模式 缓存 运维
一位工程师对“好代码”的 7 年思考
本文围绕“什么是好代码”展开,作者结合自身职业发展阶段,从初入职场时仅关注完成任务的“黑盒认知”,逐步过渡到深入思考代码质量的多维度评价标准。
一位工程师对“好代码”的 7 年思考
|
10天前
|
存储 SQL 运维
Apache Doris 在小米统一 OLAP 和湖仓一体的实践
小米早在 2019 年便引入 Apache Doris 作为 OLAP 分析型数据库之一,经过五年的技术沉淀,已形成以 Doris 为核心的分析体系,并基于 2.1 版本异步物化视图、3.0 版本湖仓一体与存算分离等核心能力优化数据架构。本文将详细介绍小米数据中台基于 Apache Doris 3.0 的查询链路优化、性能提升、资源管理、自动化运维、可观测等一系列应用实践。
84 1
Apache Doris 在小米统一 OLAP 和湖仓一体的实践
|
4天前
|
消息中间件 Prometheus 监控
百万 QPS 不是洪水猛兽:高流量服务的采样、聚合与可视化,咱得这么干!
百万 QPS 不是洪水猛兽:高流量服务的采样、聚合与可视化,咱得这么干!
61 12
|
9天前
|
机器学习/深度学习 人工智能 运维
别只盯着 CPU 爆了!一篇文章带你看懂:从指标到根因的 AIOps 自动化故障定位流水线
别只盯着 CPU 爆了!一篇文章带你看懂:从指标到根因的 AIOps 自动化故障定位流水线
122 15
|
9天前
|
SQL 存储 分布式计算
Parquet 和 ORC 到底有啥区别?别再云里雾里了,咱今天把列式存储聊明白!
Parquet 和 ORC 到底有啥区别?别再云里雾里了,咱今天把列式存储聊明白!
94 9