基于YOLOv8的人脸表情识别项目【完整源码数据集+PyQt5界面+完整训练流程+开箱即用】

简介: 本项目基于YOLOv8开发人脸表情识别系统,集成PyQt5图形界面,支持图片、文件夹、视频及摄像头等多种输入方式的表情检测。具备开箱即用的特性,包含完整源码、预训练模型权重与数据集,适合毕业设计、科研及行业应用。功能涵盖单张/批量图片检测、视频实时分析、摄像头流处理等,并可保存结果。项目附带详细训练与部署流程,助力快速构建情绪识别系统。

基于YOLOv8的人脸表情识别项目【完整源码数据集+PyQt5界面+完整训练流程+开箱即用】

基本功能演示

在这里插入图片描述

动图展示均为二倍速,且画质压缩,演示效果较差。完整功能以及优秀的效果体验请运行项目亲自体验。

项目摘要

本项目集成了 YOLOv8 表情检测模型PyQt5 图形界面工具,实现了包括图片、文件夹、视频与摄像头等多种输入方式的人脸表情识别功能。配套完整源码与训练流程说明,让你开箱即用、快速部署自己的情绪识别系统,源码打包在文末。

前言

近年来,随着计算机视觉和深度学习的发展,人脸表情识别技术在安防监控、智能人机交互、情绪识别等领域得到了广泛应用。本文将带你构建一个基于 YOLOv8 的人脸表情识别系统,实现从训练模型到图形化界面部署的完整流程。

一、软件核心功能介绍及效果演示

本项目实现的主要功能如下:

  • ✅ 支持 单张图片 的人脸表情检测与识别;
  • ✅ 支持 批量文件夹图片 检测;
  • ✅ 支持对 本地视频文件 进行表情识别;
  • ✅ 支持 实时摄像头表情识别
  • ✅ 可视化结果 实时绘制表情标签与置信度
  • ✅ 检测结果可选择保存为图片或视频;
  • ✅ 使用 PyQt5 构建图形界面,无需命令行操作。

二、软件效果演示

为了直观展示本系统基于 YOLOv8 模型的人脸表情识别能力,本文设计了多种操作场景,涵盖静态图片、批量图片、视频以及实时摄像头流的检测演示。用户通过简洁易用的界面,可以方便地体验不同模式下的人脸表情自动识别过程及其效果,下面依次展示各项功能的具体应用与表现。

image-20250526190200032

(1)单图片检测演示

界面选择一张图片后,YOLOv8 模型自动识别人脸并打上表情标签,如下所示:

image-20250526164551643

(2)多文件夹图片检测演示

选择包含多张图片的文件夹,系统会批量检测每一张图片中的人脸表情,并生成对应输出。

image-20250526164706887

(3)视频检测演示

选择任意本地视频,系统逐帧进行人脸表情识别,动态绘制识别标签:

image-20250526165746732

(4)摄像头检测演示

调用电脑摄像头进行实时检测,适用于人脸识别监控、交互场景。

由于摄像头检测效果与视频检测效果相同,调用打开摄像头即可。

image-20250526165855418

(5)保存图片与视频检测结果

检测完成后,用户可选择是否将结果保存到本地,图片自动标注表情类别,视频按帧绘制结果保存为 mp4 文件。

image-20250526165912382

三、模型的训练、评估与推理

3.1 YOLOv8的基本原理

YOLOv8 是 Ultralytics 发布的新一代实时目标检测模型,具备如下优势:

  • 速度快:推理速度提升明显;
  • 准确率高:支持 Anchor-Free 架构;
  • 支持分类/检测/分割/姿态多任务
  • 本项目使用 YOLOv8 的 Detection 分支,训练时每类表情均标注为独立目标。

YOLOv8 由Ultralytics 于 2023 年 1 月 10 日发布,在准确性和速度方面具有尖端性能。在以往YOLO 版本的基础上,YOLOv8 引入了新的功能和优化,使其成为广泛应用中各种物体检测任务的理想选择。

image-20250526165954475

YOLOv8原理图如下:

image-20250526170118103

3.2 数据集准备与训练

采用 YOLO 格式的数据集结构如下:

dataset/
├── images/
│   ├── train/
│   └── val/
├── labels/
│   ├── train/
│   └── val/

每张图像有对应的 .txt 文件,内容格式为:

4 0.5096721233576642 0.352838390077821 0.3947600423357664 0.31825755058365757

表情分类包括(可自定义):

nc: 7
names: ["Surprise", "Fear", "Disgust", "Happiness", "Sadness", "Anger", "Neutral"]

惊讶、恐惧、厌恶、快乐、悲伤、愤怒、平静

val_batch2_pred

使用 Ultralytics 提供的 CLI 工具:

yolo detect train data=datasets/expression/loopy.yaml model=yolov8n.yaml pretrained=yolov8n.pt epochs=100 batch=16 lr0=0.001

image-20250526153953373

3.3. 训练结果评估

训练完成后,将在 runs/detect/train 目录生成结果文件,包括:

  • results.png:损失曲线和 mAP 曲线;
  • weights/best.pt:最佳模型权重;
  • confusion_matrix.png:混淆矩阵分析图。

若 mAP@0.5 达到 90% 以上,即可用于部署。

在深度学习领域,我们通常通过观察损失函数下降的曲线来评估模型的训练状态。YOLOv8训练过程中,主要包含三种损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss)。训练完成后,相关的训练记录和结果文件会保存在runs/目录下,具体内容如下:

image-20250526154013786

3.4检测结果识别

使用 PyTorch 推理接口加载模型:

import cv2
from ultralytics import YOLO
import torch
from torch.serialization import safe_globals
from ultralytics.nn.tasks import DetectionModel

# 加入可信模型结构
safe_globals().add(DetectionModel)

# 加载模型并推理
model = YOLO('runs/detect/train/weights/best.pt')
results = model('test.jpg', save=True, conf=0.25)

# 获取保存后的图像路径
# 默认保存到 runs/detect/predict/ 目录
save_path = results[0].save_dir / results[0].path.name

# 使用 OpenCV 加载并显示图像
img = cv2.imread(str(save_path))
cv2.imshow('Detection Result', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

预测结果包含表情类别、置信度、边框坐标等信息。

image-20250526155355629

四.YOLOV8+YOLOUI完整源码打包

本文涉及到的完整全部程序文件:包括python源码、数据集、训练代码、UI文件、测试图片视频等(见下图),获取方式见【4.2 完整源码下载】:

4.1 项目开箱即用

作者已将整个工程打包。包含已训练完成的权重,读者可不用自行训练直接运行检测。

运行项目只需输入下面命令。

python main.py

读者也可自行配置训练集,或使用打包好的数据集直接训练。

自行训练项目只需输入下面命令。

yolo detect train data=datasets/expression/loopy.yaml model=yolov8n.yaml pretrained=yolov8n.pt epochs=100 batch=16 lr0=0.001

4.2 完整源码下载

至项目实录视频下方获取:https://www.bilibili.com/video/BV18NumzoE1h/

在这里插入图片描述

包含:

📦完整项目源码

📦 预训练模型权重

🗂️ 数据集地址(含标注脚本)

总结

本项目完整实现了人脸表情识别系统从训练到部署的全流程,具备如下亮点:

✅ 采用 YOLOv8 实现高效目标检测;
✅ PyQt5 界面,用户体验良好;
✅ 多场景支持,实用性强;
✅ 全代码打包+附数据集,适合毕业设计、科研落地、行业应用等场景。

相关文章
|
机器学习/深度学习 编解码 人工智能
人脸表情[七种表情]数据集(15500张图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】
本数据集包含15,500张已划分、已标注的人脸表情图像,覆盖惊讶、恐惧、厌恶、高兴、悲伤、愤怒和中性七类表情,适用于YOLO系列等深度学习模型的分类与检测任务。数据集结构清晰,分为训练集与测试集,支持多种标注格式转换,适用于人机交互、心理健康、驾驶监测等多个领域。
|
机器学习/深度学习 算法 计算机视觉
yolov8人脸识别-脸部关键点检测(代码+原理)
yolov8人脸识别-脸部关键点检测(代码+原理)
|
5月前
|
机器学习/深度学习 人工智能 数据挖掘
基于YOLOv8的狗狗品种(多达60种常见犬类)品种鉴别识别项目|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
随着宠物经济的不断发展,狗狗已经成为众多家庭的重要成员。不同品种犬类在性格、饲养方式、健康管理上有显著差异,快速准确地识别狗狗品种有着重要应用价值。传统方式依赖人工识别,效率低且易出错。 本项目借助YOLOv8强大的目标检测能力,结合高质量数据集训练,实现60种犬类的高精度自动分类识别,并提供可交互图形界面,极大降低使用门槛。
基于YOLOv8的狗狗品种(多达60种常见犬类)品种鉴别识别项目|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
|
8月前
|
人工智能 自然语言处理 数据可视化
让AI单次生成4万字!WriteHERE:开源AI长文写作框架,单次生成超长文本,小说报告一键搞定!
WriteHERE是基于异质递归规划技术的开源AI写作框架,能动态分解写作任务并管理任务依赖关系,支持单次生成超过4万字的专业报告。
1503 55
让AI单次生成4万字!WriteHERE:开源AI长文写作框架,单次生成超长文本,小说报告一键搞定!
|
编解码 Java Maven
阿里云视觉智能开放平台(VIAPI)人脸属性表情识别Python SDK使用说明
本文为您介绍表情识别RecognizeExpression的语法及示例。
1334 0
|
机器学习/深度学习 人工智能 安全
基于YOLOv8的路面缺陷(路面裂缝、井盖、坑洼路面)识别项目【完整源码数据集+PyQt5界面+完整训练流程+开箱即用!】
本项目基于YOLOv8与PyQt5,打造路面缺陷检测系统,支持裂缝、井盖、坑洼识别,涵盖图片、视频、摄像头等多种输入方式。提供完整训练数据、预训练模型及图形化界面,开箱即用,本地运行,方便二次开发。适用于智慧城市建设与道路安全巡检,推动AI检测技术实际应用。项目包含源码、数据集、训练代码,支持科研学习与工程实战。
|
7月前
|
机器学习/深度学习 人工智能 算法
Python+YOLO v8 实战:手把手教你打造专属 AI 视觉目标检测模型
本文介绍了如何使用 Python 和 YOLO v8 开发专属的 AI 视觉目标检测模型。首先讲解了 YOLO 的基本概念及其高效精准的特点,接着详细说明了环境搭建步骤,包括安装 Python、PyCharm 和 Ultralytics 库。随后引导读者加载预训练模型进行图片验证,并准备数据集以训练自定义模型。最后,展示了如何验证训练好的模型并提供示例代码。通过本文,你将学会从零开始打造自己的目标检测系统,满足实际场景需求。
6910 0
Python+YOLO v8 实战:手把手教你打造专属 AI 视觉目标检测模型
|
人工智能 定位技术 API
旅行规划太难做?5 分钟构建智能Agent,集成地图 MCP Server
MCP(Model Coordination Protocol)是由Anthropic公司提出的开源协议,旨在通过标准化交互方式解决AI大模型与外部数据源、工具的集成难题。阿里云百炼平台上线了业界首个全生命周期MCP服务,大幅降低Agent开发门槛,实现5分钟快速搭建智能体应用。本文介绍基于百炼平台“模型即选即用+MCP服务”模式,详细展示了如何通过集成高德地图MCP Server为智能体添加地图信息与天气查询能力,构建全面的旅行规划助手。方案涵盖智能体创建、模型配置、指令与技能设置等步骤,并提供清理资源的指导以避免费用产生。
|
机器学习/深度学习 编解码 监控
目标检测实战(六): 使用YOLOv8完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
这篇文章详细介绍了如何使用YOLOv8进行目标检测任务,包括环境搭建、数据准备、模型训练、验证测试以及模型转换等完整流程。
22050 59
目标检测实战(六): 使用YOLOv8完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)