基于生物地理算法的MLP多层感知机优化matlab仿真

简介: 本程序基于生物地理算法(BBO)优化MLP多层感知机,通过MATLAB2022A实现随机数据点的趋势预测,并输出优化收敛曲线。BBO模拟物种在地理空间上的迁移、竞争与适应过程,以优化MLP的权重和偏置参数,提升预测性能。完整程序无水印,适用于机器学习和数据预测任务。

1.程序功能描述
基于生物地理算法的MLP多层感知机优化matlab仿真,完成随机数据点的趋势预测,并输出优化收敛曲线。

2.测试软件版本以及运行结果展示
MATLAB2022A版本运行
1.jpeg
2.jpeg

(完整程序运行后无水印)

3.核心程序

% 迭代训练
for i = 1:1000
    wdh = (wdo(:, 2:end) .* ((1-yh.^2)))' * [ones(size(x, 1), 1) x];

    % 更新权重
    Wo  = Wo + n * sum(wdo)';
    Wh  = Wh + n * wdh';

    % 记录每次迭代的均方误差
    E(i) = mse(e);

    % 绘制实际值与预测值对比图

    plot(x(:, 2), y, '.b');
    hold on
    plot(x(:, 2), logsig([ones(Npoint, 1) tanh([ones(Npoint, 1) x] * Wh)] * Wo), 'g','linewidth',2);
    xlabel('x'); 
    ylabel('y'); 
    legend('实际', '预测');
    hold off
    % 更新图形显示
    drawnow;
end

figure;
plot(E,'linewidth',2);
xlabel('MLP训练次数');
ylabel('训练误差');

4.本算法原理
基于生物地理算法(Biogeography-Based Optimization, BBO)的多层感知机(Multilayer Perceptron, MLP)优化,是一种结合了生态学中生物分布规律与机器学习模型优化的技术。这种混合方法旨在通过模拟自然界中物种在地理空间上的迁移、竞争与适应过程,来寻找MLP神经网络的最优参数配置,从而提升其预测或分类性能。

4.1 生物地理算法(BBO)原理
BBO算法灵感来源于生态学中的生物地理学,它模拟了物种如何在不同岛屿(代表解空间的不同区域)之间迁移,以及这些迁移如何影响物种的多样性和丰度。BBO的核心在于三个主要操作:移民(Migration)、灭绝(Extinction)和殖民(Colonization)。
9a27d2125859eea210266d9f47701b40_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

4.2 多层感知机(MLP)
MLP是一种典型的前馈神经网络,由输入层、隐藏层和输出层组成,各层间通过权重连接。其输出Ok​由以下公式计算:

d223aad87ff91ba4f2593828ea562601_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   其中,f是激活函数,wkj(2)​是从隐藏层到输出层的第k个神经元与第j个隐藏神经元之间的权重,hj​是隐藏层的输出,bk(2)​是输出层的偏置项,Nh​是隐藏层的神经元数量。

4.3 BBO优化MLP参数
将BBO应用于MLP参数优化,实质上是将网络的权重和偏置视为生态岛屿上的“物种”,而每个可能的参数组合对应一个岛屿。优化过程涉及以下步骤:

初始化:随机生成初始解集(即一系列MLP参数配置),每个解代表一个岛屿上的物种分布。

评估:使用交叉验证等方法评估每个解(参数配置)的适应度,即模型在特定任务上的性能指标,如准确率或损失函数值。

迁移、灭绝与殖民:基于上述BBO算法原理,更新每个岛屿上的物种分布(即调整MLP的参数)。具体操作包括根据适应度和岛屿间相似度进行参数迁移,依据灭绝率随机移除某些参数配置,并按照殖民率引入新的参数配置。

迭代:重复执行评估和更新步骤,直到达到预设的迭代次数或满足停止准则,如适应度改善不明显。

相关文章
|
2月前
|
存储 传感器 分布式计算
针对大尺度L1范数优化问题的MATLAB工具箱推荐与实现
针对大尺度L1范数优化问题的MATLAB工具箱推荐与实现
|
2月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
261 0
|
2月前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
174 8
|
2月前
|
机器学习/深度学习 算法 自动驾驶
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
180 8
|
2月前
|
机器学习/深度学习 供应链 算法
【电动车】基于削峰填谷的电动汽车多目标优化调度策略研究(Matlab代码实现)
【电动车】基于削峰填谷的电动汽车多目标优化调度策略研究(Matlab代码实现)
120 0
|
2月前
|
机器学习/深度学习 数据采集 负载均衡
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
166 0
|
2月前
|
机器学习/深度学习 算法 新能源
基于动态非合作博弈的大规模电动汽车实时优化调度电动汽车决策研究(Matlab代码实现)
基于动态非合作博弈的大规模电动汽车实时优化调度电动汽车决策研究(Matlab代码实现)
|
2月前
|
机器学习/深度学习 存储 人工智能
基于双层共识控制的直流微电网优化调度(Matlab代码实现)
基于双层共识控制的直流微电网优化调度(Matlab代码实现)
120 0
|
2月前
|
机器学习/深度学习 人工智能 算法
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
152 0
|
2月前
|
算法 定位技术 计算机视觉
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
128 0