RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为2023-CVPR ConvNeXt V2 (附网络详解和完整配置步骤)

简介: RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为2023-CVPR ConvNeXt V2 (附网络详解和完整配置步骤)

一、本文介绍

本文记录的是将ConvNeXt V2应用到RT-DETR中的改进方法研究。本文将ConvNeXt V2应用于RT-DETR,一方面利用全卷积掩码自动编码器在训练时优化特征学习,减少模型对大规模标注数据的依赖;另一方面,通过全局响应归一化层增强特征竞争,缓解特征坍塌问题,提高特征多样性。

本文在RT-DETR的基础上配置了原论文中convnextv2_atto', 'convnextv2_femto, convnextv2_pico, convnextv2_nano, convnextv2_tiny, convnextv2_base, convnextv2_large, convnextv2_huge八种模型,以满足不同的需求。


专栏目录:RT-DETR改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
专栏地址:RT-DETR改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

二、ConvNeXt V2介绍

ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders

ConvNeXt V2是一种全新的ConvNet模型家族,旨在提升纯卷积神经网络在各类下游任务中的性能。它在模型结构设计上有独特的出发点,结构原理涉及多个创新组件,并且在性能上展现出显著优势。

2.1 设计出发点

  • 架构与自监督学习结合的挑战:视觉识别领域中,神经网络架构和自监督学习框架对模型性能至关重要。将ConvNeXt与掩码自动编码器(MAE)结合时存在挑战,MAE的编解码器设计针对Transformer的序列处理能力优化,与使用密集滑动窗口的标准ConvNets不兼容。直接将两者结合,未考虑架构与训练目标的关系,难以达到最优性能。先前研究也表明,用基于掩码的自监督学习训练ConvNets存在困难。
  • 特征坍塌问题:对ConvNeXt进行特征空间分析时发现,直接在掩码输入上训练ConvNeXt,MLP层存在特征坍塌现象,即许多特征图处于死亡或饱和状态,通道间激活冗余,这影响了模型的性能。

2.2 结构原理

  • 全卷积掩码自动编码器(FCMAE):采用随机掩码策略,掩码率为0.6,在最后阶段生成掩码并递归上采样到最高分辨率。使用ConvNeXt模型作为编码器,从“稀疏数据视角”出发,将标准卷积层转换为子流形稀疏卷积,使模型仅对可见数据点操作,解决掩码图像建模中信息泄漏问题。解码器采用轻量级的ConvNeXt块,整体形成非对称编解码器架构。计算重建图像与目标图像的均方误差(MSE),仅在掩码区域应用损失。

在这里插入图片描述

  • 全局响应归一化(GRN):为解决特征坍塌问题提出GRN层。该层通过全局特征聚合、特征归一化和特征校准三个步骤,增强通道间的特征竞争。

在这里插入图片描述

具体来说,先使用L2范数进行全局特征聚合,再通过除法归一化计算通道的相对重要性,最后校准原始输入响应。将GRN层融入ConvNeXt块,并去除LayerScale,形成ConvNeXt V2模型家族。

2.3 优势

  • 性能提升显著:在ImageNet分类、COCO检测和ADE20K分割等多种下游任务中,ConvNeXt V2模型性能相比ConvNeXt V1有显著提升。
  • 有效缓解特征坍塌:通过可视化和余弦距离分析可知,ConvNeXt V2有效缓解了特征坍塌问题,各层的余弦距离值较高,表明特征多样性得以保持,学习行为与MAE预训练的ViT模型相似。
  • 模型扩展性强:评估了从低容量的3.7M Atto模型到高容量的650M Huge模型等一系列不同尺寸的模型,结果表明模型具有良好的扩展性,在所有模型尺寸上,微调结果均优于完全监督的对应模型,首次在广泛的模型范围内展示了掩码图像建模的有效性和高效性。

论文:https://arxiv.org/pdf/2301.00808
源码:https://github.com/facebookresearch/ConvNeXt-V2

三、实现代码及YOLOv11修改步骤

模块完整介绍、个人总结、实现代码、模块改进、二次创新以及各模型添加步骤参考如下地址:

https://blog.csdn.net/qq_42591591/article/details/145279024

目录
相关文章
|
3天前
|
机器学习/深度学习 人工智能 自然语言处理
PAI Model Gallery 支持云上一键部署 DeepSeek-V3、DeepSeek-R1 系列模型
DeepSeek 系列模型以其卓越性能在全球范围内备受瞩目,多次评测中表现优异,性能接近甚至超越国际顶尖闭源模型(如OpenAI的GPT-4、Claude-3.5-Sonnet等)。企业用户和开发者可使用 PAI 平台一键部署 DeepSeek 系列模型,实现 DeepSeek 系列模型与现有业务的高效融合。
|
3天前
|
人工智能 搜索推荐 Docker
手把手教你使用 Ollama 和 LobeChat 快速本地部署 DeepSeek R1 模型,创建个性化 AI 助手
DeepSeek R1 + LobeChat + Ollama:快速本地部署模型,创建个性化 AI 助手
1967 101
手把手教你使用 Ollama 和 LobeChat 快速本地部署 DeepSeek R1 模型,创建个性化 AI 助手
|
1月前
|
供应链 监控 安全
对话|企业如何构建更完善的容器供应链安全防护体系
阿里云与企业共筑容器供应链安全
171370 17
|
10天前
|
Linux iOS开发 MacOS
deepseek部署的详细步骤和方法,基于Ollama获取顶级推理能力!
DeepSeek基于Ollama部署教程,助你免费获取顶级推理能力。首先访问ollama.com下载并安装适用于macOS、Linux或Windows的Ollama版本。运行Ollama后,在官网搜索“deepseek”,选择适合你电脑配置的模型大小(如1.5b、7b等)。通过终端命令(如ollama run deepseek-r1:1.5b)启动模型,等待下载完成即可开始使用。退出模型时输入/bye。详细步骤如下图所示,轻松打造你的最强大脑。
8542 86
|
1月前
|
供应链 监控 安全
对话|企业如何构建更完善的容器供应链安全防护体系
随着云计算和DevOps的兴起,容器技术和自动化在软件开发中扮演着愈发重要的角色,但也带来了新的安全挑战。阿里云针对这些挑战,组织了一场关于云上安全的深度访谈,邀请了内部专家穆寰、匡大虎和黄竹刚,深入探讨了容器安全与软件供应链安全的关系,分析了当前的安全隐患及应对策略,并介绍了阿里云提供的安全解决方案,包括容器镜像服务ACR、容器服务ACK、网格服务ASM等,旨在帮助企业构建涵盖整个软件开发生命周期的安全防护体系。通过加强基础设施安全性、技术创新以及倡导协同安全理念,阿里云致力于与客户共同建设更加安全可靠的软件供应链环境。
150307 32
|
1天前
|
人工智能 自然语言处理 JavaScript
宜搭上新,DeepSeek 插件来了!
钉钉宜搭近日上线了DeepSeek插件,无需编写复杂代码,普通用户也能轻松调用强大的AI大模型能力。安装后,平台新增「AI生成」组件,支持创意内容生成、JS代码编译、工作汇报等场景,大幅提升工作效率。快来体验这一高效智能的办公方式吧!
883 5
|
2天前
|
API 开发工具 Python
阿里云PAI部署DeepSeek及调用
本文介绍如何在阿里云PAI EAS上部署DeepSeek模型,涵盖7B模型的部署、SDK和API调用。7B模型只需一张A10显卡,部署时间约10分钟。文章详细展示了模型信息查看、在线调试及通过OpenAI SDK和Python Requests进行调用的步骤,并附有测试结果和参考文档链接。
660 5
阿里云PAI部署DeepSeek及调用
|
11天前
|
人工智能 自然语言处理 Java
Spring AI,搭建个人AI助手
本期主要是实操性内容,聊聊AI大模型,并使用Spring AI搭建属于自己的AI助手、知识库。本期所需的演示源码笔者托管在Gitee上(https://gitee.com/catoncloud/spring-ai-demo),读者朋友可自行查阅。
938 41
Spring AI,搭建个人AI助手
|
3天前
|
机器学习/深度学习 人工智能 并行计算
一文了解火爆的DeepSeek R1 | AIGC
DeepSeek R1是由DeepSeek公司推出的一款基于强化学习的开源推理模型,无需依赖监督微调或人工标注数据。它在数学、代码和自然语言推理任务上表现出色,具备低成本、高效率和多语言支持等优势,广泛应用于教育辅导、金融分析等领域。DeepSeek R1通过长链推理、多语言支持和高效部署等功能,显著提升了复杂任务的推理准确性,并且其创新的群体相对策略优化(GRPO)算法进一步提高了训练效率和稳定性。此外,DeepSeek R1的成本低至OpenAI同类产品的3%左右,为用户提供了更高的性价比。
785 10
|
2月前
|
弹性计算 人工智能 安全
对话 | ECS如何构筑企业上云的第一道安全防线
随着中小企业加速上云,数据泄露、网络攻击等安全威胁日益严重。阿里云推出深度访谈栏目,汇聚产品技术专家,探讨云上安全问题及应对策略。首期节目聚焦ECS安全性,提出三道防线:数据安全、网络安全和身份认证与权限管理,确保用户在云端的数据主权和业务稳定。此外,阿里云还推出了“ECS 99套餐”,以高性价比提供全面的安全保障,帮助中小企业安全上云。
201994 15
对话 | ECS如何构筑企业上云的第一道安全防线

热门文章

最新文章