YOLOv11改进策略【Neck】| HS-FPN:高级筛选特征融合金字塔,加强细微特征的检测

简介: YOLOv11改进策略【Neck】| HS-FPN:高级筛选特征融合金字塔,加强细微特征的检测

一、本文介绍

本文将HS-FPN结构融入YOLOv11 以优化目标检测网络模型HS-FPN借助通道注意力机制及独特的多尺度融合策略,有效应对目标尺寸差异及特征稀缺问题。在YOLOv11中应用HS - FPN时,其利用高级特征筛选低级特征,增强特征表达,助力模型精准定位和识别目标,减少因尺度变化及特征不足导致的检测误差,显著提升YOLOv11在各项检测任务中的准确性与稳定性。


专栏目录:YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
专栏地址:YOLOv11改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

二、HS-FPN介绍

Accurate Leukocyte Detection Based on Deformable-DETR and Multi-Level Feature Fusion for Aiding Diagnosis of Blood Diseases

HS - FPN结构特征选择模块特征融合模块组成。

  • 特征选择模块中,CA模块先处理输入特征图,经池化激活函数确定各通道权重以过滤特征图DM模块再对不同尺度特征图降维;
  • 特征融合模块中,利用SFF机制以高级特征为权重筛选低级特征语义信息后融合,提升模型检测能力。

    2.1 出发点

    在白细胞数据集中,白细胞识别任务面临多尺度问题,不同类型白细胞直径通常有差异,相同白细胞在不同显微镜下成像大小也会不同,这使得模型难以准确识别白细胞,所以需要设计HS - FPN来实现多尺度特征融合,帮助模型捕捉更全面的白细胞特征信息。

    2.2 结构原理

  • 特征选择模块:由CA模块DM模块组成。对于输入特征图$f{in } \in R^{C ×H ×W}$,CA模块先进行全局平均池化和全局最大池化,再结合结果,经Sigmoid激活函数确定各通道权重$f{C A} \in R^{C ×1 ×1}$,通过与对应尺度特征图相乘得到过滤后的特征图。因不同尺度特征图通道数不同,DM模块用1×1卷积将各尺度特征图通道数降为 256。

  • 特征融合模块:骨干网络生成的多尺度特征图中,高级特征语义信息丰富但目标定位粗糙,低级特征定位精确但语义信息有限。传统直接像素求和融合有缺陷,研究中的SFF模块以高级特征为权重筛选低级特征中的关键语义信息。对于输入高级特征$f{high } \in R^{C ×H ×W}$和低级特征$f{low } \in R^{C ×H{1} ×W{1}}$,先对高级特征用步长为2、卷积核为3 x3的转置卷积扩展,再用双线性插值统一维度得到$f{att } \in R^{C ×H{1} ×W{1}}$,经 CA 模块将高级特征转为注意力权重过滤低级特征,最后融合得到$f{out } \in R^{C ×H{1} ×W{1}}$,其融合过程公式为$$f_{att }=B L\left(T - Conv\left(f_{high }\right)\right)$$$$f_{out }=f_{low } * C A\left(f_{att }\right)+f_{att }$$

在这里插入图片描述

2.3 作用

HS-FPN能够利用通道注意力模块,以高级语义特征为权重过滤低级特征,并将筛选后的特征与高级特征逐点相加,实现多尺度特征融合,从而提高模型的特征表达能力,有助于检测到细微特征,增强模型的检测能力。

论文:https://arxiv.org/pdf/2212.11677
源码:https://github.com/Barrett-python/DuAT

三、实现代码及YOLOv11修改步骤

模块完整介绍、个人总结、实现代码、模块改进、二次创新以及各模型添加步骤参考如下地址:

https://blog.csdn.net/qq_42591591/article/details/144635332

目录
相关文章
|
1月前
|
供应链 监控 安全
对话|企业如何构建更完善的容器供应链安全防护体系
阿里云与企业共筑容器供应链安全
171369 16
|
2天前
|
人工智能 搜索推荐 Docker
手把手教你使用 Ollama 和 LobeChat 快速本地部署 DeepSeek R1 模型,创建个性化 AI 助手
DeepSeek R1 + LobeChat + Ollama:快速本地部署模型,创建个性化 AI 助手
1594 95
手把手教你使用 Ollama 和 LobeChat 快速本地部署 DeepSeek R1 模型,创建个性化 AI 助手
|
1月前
|
供应链 监控 安全
对话|企业如何构建更完善的容器供应链安全防护体系
随着云计算和DevOps的兴起,容器技术和自动化在软件开发中扮演着愈发重要的角色,但也带来了新的安全挑战。阿里云针对这些挑战,组织了一场关于云上安全的深度访谈,邀请了内部专家穆寰、匡大虎和黄竹刚,深入探讨了容器安全与软件供应链安全的关系,分析了当前的安全隐患及应对策略,并介绍了阿里云提供的安全解决方案,包括容器镜像服务ACR、容器服务ACK、网格服务ASM等,旨在帮助企业构建涵盖整个软件开发生命周期的安全防护体系。通过加强基础设施安全性、技术创新以及倡导协同安全理念,阿里云致力于与客户共同建设更加安全可靠的软件供应链环境。
150306 32
|
9天前
|
Linux iOS开发 MacOS
deepseek部署的详细步骤和方法,基于Ollama获取顶级推理能力!
DeepSeek基于Ollama部署教程,助你免费获取顶级推理能力。首先访问ollama.com下载并安装适用于macOS、Linux或Windows的Ollama版本。运行Ollama后,在官网搜索“deepseek”,选择适合你电脑配置的模型大小(如1.5b、7b等)。通过终端命令(如ollama run deepseek-r1:1.5b)启动模型,等待下载完成即可开始使用。退出模型时输入/bye。详细步骤如下图所示,轻松打造你的最强大脑。
7578 85
|
2天前
|
机器学习/深度学习 人工智能 自然语言处理
PAI Model Gallery 支持云上一键部署 DeepSeek-V3、DeepSeek-R1 系列模型
DeepSeek 系列模型以其卓越性能在全球范围内备受瞩目,多次评测中表现优异,性能接近甚至超越国际顶尖闭源模型(如OpenAI的GPT-4、Claude-3.5-Sonnet等)。企业用户和开发者可使用 PAI 平台一键部署 DeepSeek 系列模型,实现 DeepSeek 系列模型与现有业务的高效融合。
|
10天前
|
人工智能 自然语言处理 Java
Spring AI,搭建个人AI助手
本期主要是实操性内容,聊聊AI大模型,并使用Spring AI搭建属于自己的AI助手、知识库。本期所需的演示源码笔者托管在Gitee上(https://gitee.com/catoncloud/spring-ai-demo),读者朋友可自行查阅。
925 41
Spring AI,搭建个人AI助手
|
2月前
|
弹性计算 人工智能 安全
对话 | ECS如何构筑企业上云的第一道安全防线
随着中小企业加速上云,数据泄露、网络攻击等安全威胁日益严重。阿里云推出深度访谈栏目,汇聚产品技术专家,探讨云上安全问题及应对策略。首期节目聚焦ECS安全性,提出三道防线:数据安全、网络安全和身份认证与权限管理,确保用户在云端的数据主权和业务稳定。此外,阿里云还推出了“ECS 99套餐”,以高性价比提供全面的安全保障,帮助中小企业安全上云。
201990 15
对话 | ECS如何构筑企业上云的第一道安全防线
|
2天前
|
机器学习/深度学习 人工智能 并行计算
一文了解火爆的DeepSeek R1 | AIGC
DeepSeek R1是由DeepSeek公司推出的一款基于强化学习的开源推理模型,无需依赖监督微调或人工标注数据。它在数学、代码和自然语言推理任务上表现出色,具备低成本、高效率和多语言支持等优势,广泛应用于教育辅导、金融分析等领域。DeepSeek R1通过长链推理、多语言支持和高效部署等功能,显著提升了复杂任务的推理准确性,并且其创新的群体相对策略优化(GRPO)算法进一步提高了训练效率和稳定性。此外,DeepSeek R1的成本低至OpenAI同类产品的3%左右,为用户提供了更高的性价比。
707 10
|
12天前
|
人工智能 JavaScript 前端开发
白嫖 DeepSeek ,低代码竟然会一键作诗?
宜搭低代码平台接入 DeepSeek AI 大模型能力竟然这么方便!本教程将揭秘宜搭如何快速接入 DeepSeek API,3 步打造专属作诗机器人,也许你还能开发出更多有意思的智能玩法,让创意在代码间自由生长。
1551 13
|
10天前
|
Linux iOS开发 MacOS
DeepSeek爆火,如何免费部署到你的电脑上?获取顶级推理能力教程来了
如何在本地电脑上免费部署DeepSeek,获取顶级推理能力?只需三步:1. 访问Ollama官网下载并安装对应操作系统的版本(支持macOS、Linux和Windows)。2. 打开Ollama并确保其正常运行。3. 在Ollama官网搜索并选择DeepSeek模型(如deepseek-r1),根据电脑配置选择合适的模型大小(1.5B至671B)。通过终端命令(如ollama run deepseek-r1:1.5b)运行模型,即可开始使用DeepSeek进行推理。退出模型时,在终端输入/bye。更多详情请参考Ollama官方文档。