❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日分享大模型与 AI 领域的最新开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术,欢迎关注我哦!
🥦 微信公众号|搜一搜:蚝油菜花 🥦
🚀 快速阅读
- 介绍:Janus-Pro 是 DeepSeek 推出的开源多模态模型,支持图像理解和生成,提供 1B 和 7B 两种规模。
- 主要功能:支持从文本生成图像、图像解析、指令跟随等多模态任务。
- 技术原理:采用解耦的视觉编码路径和统一的 Transformer 架构,提升多模态任务的灵活性和稳定性。
正文(附运行示例)
Janus-Pro是什么
Janus-Pro 是由 DeepSeek 推出的开源多模态 AI 模型,旨在统一处理图像理解和图像生成任务。该模型提供了 1B 和 7B 两种规模,适用于多种应用场景。通过改进的训练策略、扩展的数据集和更大规模的模型,Janus-Pro 在文本到图像的生成能力和指令跟随性能方面有了显著提升。
Janus-Pro 采用了解耦的视觉编码路径,避免了视觉和语言信息处理中的冲突,提高了模型的灵活性和扩展性。这使得它能够更好地处理复杂的多模态任务,成为一个强大的统一多模态模型。
Janus-Pro的主要功能
- 多模态理解与生成:支持从文本生成图像(文本到图像),能理解和处理图像内容。根据文本描述生成符合要求的图像,对图像进行解析并生成相关的文本或标签。
- 开源与大规模模型:提供多个版本的模型(如 1B 和 7B),开发者和研究人员可以自由使用并进行二次开发。
- 改进的训练策略与数据集:通过改进的训练策略,Janus-Pro 在多模态任务中表现更加稳定和高效。采用了大规模的训练数据集,覆盖了更广泛的场景,提升了模型的理解能力和生成质量。
- 解耦视觉编码路径:通过将视觉信息和文本信息的编码路径解耦,避免了视觉和语言信息处理中的冲突,提高了模型的灵活性和扩展性,能更好地处理复杂的多模态任务。
- 图像到文本的指令跟随:能根据图像内容生成相关的文本描述,或者按照指令执行任务。例如,根据一张图像生成相应的文本描述,或根据指令对图像进行处理。
- 高效的图像生成能力:在文本到图像的生成任务中表现出色,根据输入的文本描述生成高质量的图像。生成的图像具有较高的真实性和细节,满足复杂的需求。
Janus-Pro的技术原理
- 视觉编码解耦:Janus-Pro 基于独立的路径分别处理多模态理解与生成任务,有效解决视觉编码器在两种任务中的功能冲突。
- 统一 Transformer 架构:使用单一的 Transformer 架构处理多模态任务,简化了模型设计,提升了扩展能力。
- 优化的训练策略:Janus-Pro 对训练策略进行了精细调整,包括延长 ImageNet 数据集训练、聚焦文本到图像数据训练和调整数据比例。
- 扩展的训练数据:Janus-Pro 扩展了训练数据规模和多样性,包括多模态理解数据和视觉生成数据。
- 视觉编码器的创新:Janus-Pro 基于 SigLIP-L 作为视觉编码器,支持高分辨率输入,捕捉图像细节。
- 生成模块的创新:使用 LlamaGen Tokenizer,下采样率为 16,生成更精细的图像。
- 基础架构的创新:基于 DeepSeek-LLM-1.5b-base/DeepSeek-LLM-7b-base 模型构建,提供了强大的多模态处理能力。
如何运行 Janus-Pro
1. 安装依赖
在 Python >= 3.8
环境下,安装必要的依赖:
pip install -e .
2. 多模态理解示例
import torch
from transformers import AutoModelForCausalLM
from janus.models import MultiModalityCausalLM, VLChatProcessor
from janus.utils.io import load_pil_images
# 指定模型路径
model_path = "deepseek-ai/Janus-Pro-7B"
vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(model_path)
tokenizer = vl_chat_processor.tokenizer
vl_gpt: MultiModalityCausalLM = AutoModelForCausalLM.from_pretrained(
model_path, trust_remote_code=True
)
vl_gpt = vl_gpt.to(torch.bfloat16).cuda().eval()
conversation = [
{
"role": "<|User|>",
"content": f"<image_placeholder>\n{question}",
"images": [image],
},
{
"role": "<|Assistant|>", "content": ""},
]
# 加载图像并准备输入
pil_images = load_pil_images(conversation)
prepare_inputs = vl_chat_processor(
conversations=conversation, images=pil_images, force_batchify=True
).to(vl_gpt.device)
# 运行图像编码器以获取图像嵌入
inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
# 运行模型以获取响应
outputs = vl_gpt.language_model.generate(
inputs_embeds=inputs_embeds,
attention_mask=prepare_inputs.attention_mask,
pad_token_id=tokenizer.eos_token_id,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
max_new_tokens=512,
do_sample=False,
use_cache=True,
)
answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
print(f"{prepare_inputs['sft_format'][0]}", answer)
3. 文本到图像生成示例
import os
import PIL.Image
import torch
import numpy as np
from transformers import AutoModelForCausalLM
from janus.models import MultiModalityCausalLM, VLChatProcessor
# 指定模型路径
model_path = "deepseek-ai/Janus-Pro-7B"
vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(model_path)
tokenizer = vl_chat_processor.tokenizer
vl_gpt: MultiModalityCausalLM = AutoModelForCausalLM.from_pretrained(
model_path, trust_remote_code=True
)
vl_gpt = vl_gpt.to(torch.bfloat16).cuda().eval()
conversation = [
{
"role": "<|User|>",
"content": "A stunning princess from kabul in red, white traditional clothing, blue eyes, brown hair",
},
{
"role": "<|Assistant|>", "content": ""},
]
sft_format = vl_chat_processor.apply_sft_template_for_multi_turn_prompts(
conversations=conversation,
sft_format=vl_chat_processor.sft_format,
system_prompt="",
)
prompt = sft_format + vl_chat_processor.image_start_tag
@torch.inference_mode()
def generate(
mmgpt: MultiModalityCausalLM,
vl_chat_processor: VLChatProcessor,
prompt: str,
temperature: float = 1,
parallel_size: int = 16,
cfg_weight: float = 5,
image_token_num_per_image: int = 576,
img_size: int = 384,
patch_size: int = 16,
):
input_ids = vl_chat_processor.tokenizer.encode(prompt)
input_ids = torch.LongTensor(input_ids)
tokens = torch.zeros((parallel_size*2, len(input_ids)), dtype=torch.int).cuda()
for i in range(parallel_size*2):
tokens[i, :] = input_ids
if i % 2 != 0:
tokens[i, 1:-1] = vl_chat_processor.pad_id
inputs_embeds = mmgpt.language_model.get_input_embeddings()(tokens)
generated_tokens = torch.zeros((parallel_size, image_token_num_per_image), dtype=torch.int).cuda()
for i in range(image_token_num_per_image):
outputs = mmgpt.language_model.model(inputs_embeds=inputs_embeds, use_cache=True, past_key_values=outputs.past_key_values if i != 0 else None)
hidden_states = outputs.last_hidden_state
logits = mmgpt.gen_head(hidden_states[:, -1, :])
logit_cond = logits[0::2, :]
logit_uncond = logits[1::2, :]
logits = logit_uncond + cfg_weight * (logit_cond-logit_uncond)
probs = torch.softmax(logits / temperature, dim=-1)
next_token = torch.multinomial(probs, num_samples=1)
generated_tokens[:, i] = next_token.squeeze(dim=-1)
next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1)
img_embeds = mmgpt.prepare_gen_img_embeds(next_token)
inputs_embeds = img_embeds.unsqueeze(dim=1)
dec = mmgpt.gen_vision_model.decode_code(generated_tokens.to(dtype=torch.int), shape=[parallel_size, 8, img_size//patch_size, img_size//patch_size])
dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1)
dec = np.clip((dec + 1) / 2 * 255, 0, 255)
visual_img = np.zeros((parallel_size, img_size, img_size, 3), dtype=np.uint8)
visual_img[:, :, :] = dec
os.makedirs('generated_samples', exist_ok=True)
for i in range(parallel_size):
save_path = os.path.join('generated_samples', "img_{}.jpg".format(i))
PIL.Image.fromarray(visual_img[i]).save(save_path)
generate(
vl_gpt,
vl_chat_processor,
prompt,
)
资源
- GitHub 仓库:https://github.com/deepseek-ai/Janus
- HuggingFace 仓库:https://huggingface.co/deepseek-ai/Janus-Pro-7B
- HuggingFace 仓库:https://huggingface.co/deepseek-ai/Janus-Pro-1B
- 在线体验 Demo:https://huggingface.co/spaces/deepseek-ai/Janus-Pro-7B
❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日分享大模型与 AI 领域的最新开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术,欢迎关注我哦!
🥦 微信公众号|搜一搜:蚝油菜花 🥦