Nature:AI也许可以拥有常识,但不是现在

简介: 人工智能(AI)的快速发展引发了关于其是否能拥有常识的讨论。尽管AI在特定任务上取得进展,但目前仍缺乏真正的常识理解。常识涉及对物理世界、社会规范和文化背景的理解,难以通过数据和算法完全捕捉。研究人员正通过大规模语言模型和强化学习等方法提升AI的常识能力,但仍面临显著局限性,如对物理世界的直观理解不足、社会文化背景理解欠缺以及常识能力的通用性差等问题。未来,多模态学习和与人类交互有望增强AI的常识能力。

人工智能(AI)的飞速发展引发了关于其是否能拥有常识的讨论。常识,作为人类智能的重要组成部分,涉及对日常情境的理解和应对能力。尽管AI在特定任务上取得了显著进展,但目前仍缺乏真正的常识。

AI系统通常基于大量数据进行训练,以执行特定任务。然而,这种训练方式难以捕捉到常识的复杂性和多样性。常识涉及对物理世界、社会规范和文化背景的理解,这些知识往往难以明确表达和量化。

例如,一个拥有常识的人类能够理解“如果下雨,地面会湿”的因果关系,而无需明确告知。然而,对于AI系统来说,理解这种隐含的因果关系可能需要大量的数据和复杂的算法。

尽管面临挑战,研究人员在AI常识研究方面取得了一些进展。一种方法是通过大规模语言模型(LLM)来捕捉常识知识。这些模型通过分析大量的文本数据,学习到语言中的隐含知识和模式。

另一种方法是通过强化学习(RL)来培养AI的常识能力。通过与环境的交互和试错,AI系统可以逐渐学习到如何在特定情境下做出合理的决策。

然而,目前的AI系统在常识方面仍存在显著局限性。首先,AI系统缺乏对物理世界的直观理解。例如,一个AI系统可能无法理解为什么一个物体在没有支撑的情况下会掉落。

其次,AI系统在社会和文化背景方面的理解也存在不足。常识往往与特定的社会和文化背景相关联,而AI系统可能无法捕捉到这些细微的差异。

最后,AI系统的常识能力通常是针对特定任务而设计的,缺乏通用性。这意味着一个在某个任务上表现良好的AI系统可能在其他任务上表现不佳。

尽管目前的AI系统在常识方面存在局限性,但研究人员对未来持乐观态度。随着技术的进步和数据的积累,AI系统有望逐渐获得更强大的常识能力。

一种可能的途径是通过多模态学习来增强AI的常识能力。通过整合来自不同感官(如视觉、听觉和触觉)的信息,AI系统可以更全面地理解世界。

另一种途径是通过与人类的交互来培养AI的常识能力。通过与人类进行对话和合作,AI系统可以学习到人类的思维方式和行为模式。

https://www.nature.com/articles/d41586-024-03262-z

目录
相关文章
|
17天前
|
供应链 监控 安全
对话|企业如何构建更完善的容器供应链安全防护体系
阿里云与企业共筑容器供应链安全
171340 13
|
19天前
|
供应链 监控 安全
对话|企业如何构建更完善的容器供应链安全防护体系
随着云计算和DevOps的兴起,容器技术和自动化在软件开发中扮演着愈发重要的角色,但也带来了新的安全挑战。阿里云针对这些挑战,组织了一场关于云上安全的深度访谈,邀请了内部专家穆寰、匡大虎和黄竹刚,深入探讨了容器安全与软件供应链安全的关系,分析了当前的安全隐患及应对策略,并介绍了阿里云提供的安全解决方案,包括容器镜像服务ACR、容器服务ACK、网格服务ASM等,旨在帮助企业构建涵盖整个软件开发生命周期的安全防护体系。通过加强基础设施安全性、技术创新以及倡导协同安全理念,阿里云致力于与客户共同建设更加安全可靠的软件供应链环境。
150296 32
|
27天前
|
弹性计算 人工智能 安全
对话 | ECS如何构筑企业上云的第一道安全防线
随着中小企业加速上云,数据泄露、网络攻击等安全威胁日益严重。阿里云推出深度访谈栏目,汇聚产品技术专家,探讨云上安全问题及应对策略。首期节目聚焦ECS安全性,提出三道防线:数据安全、网络安全和身份认证与权限管理,确保用户在云端的数据主权和业务稳定。此外,阿里云还推出了“ECS 99套餐”,以高性价比提供全面的安全保障,帮助中小企业安全上云。
201965 15
对话 | ECS如何构筑企业上云的第一道安全防线
|
5天前
|
机器学习/深度学习 自然语言处理 PyTorch
深入剖析Transformer架构中的多头注意力机制
多头注意力机制(Multi-Head Attention)是Transformer模型中的核心组件,通过并行运行多个独立的注意力机制,捕捉输入序列中不同子空间的语义关联。每个“头”独立处理Query、Key和Value矩阵,经过缩放点积注意力运算后,所有头的输出被拼接并通过线性层融合,最终生成更全面的表示。多头注意力不仅增强了模型对复杂依赖关系的理解,还在自然语言处理任务如机器翻译和阅读理解中表现出色。通过多头自注意力机制,模型在同一序列内部进行多角度的注意力计算,进一步提升了表达能力和泛化性能。
|
9天前
|
存储 人工智能 安全
对话|无影如何助力企业构建办公安全防护体系
阿里云无影助力企业构建办公安全防护体系
1256 11
|
11天前
|
机器学习/深度学习 自然语言处理 搜索推荐
自注意力机制全解析:从原理到计算细节,一文尽览!
自注意力机制(Self-Attention)最早可追溯至20世纪70年代的神经网络研究,但直到2017年Google Brain团队提出Transformer架构后才广泛应用于深度学习。它通过计算序列内部元素间的相关性,捕捉复杂依赖关系,并支持并行化训练,显著提升了处理长文本和序列数据的能力。相比传统的RNN、LSTM和GRU,自注意力机制在自然语言处理(NLP)、计算机视觉、语音识别及推荐系统等领域展现出卓越性能。其核心步骤包括生成查询(Q)、键(K)和值(V)向量,计算缩放点积注意力得分,应用Softmax归一化,以及加权求和生成输出。自注意力机制提高了模型的表达能力,带来了更精准的服务。
|
10天前
|
人工智能 自然语言处理 程序员
通义灵码2.0全新升级,AI程序员全面开放使用
通义灵码2.0来了,成为全球首个同时上线JetBrains和VSCode的AI 程序员产品!立即下载更新最新插件使用。
1404 25
|
10天前
|
消息中间件 人工智能 运维
1月更文特别场——寻找用云高手,分享云&AI实践
我们寻找你,用云高手,欢迎分享你的真知灼见!
763 36
1月更文特别场——寻找用云高手,分享云&AI实践
|
1天前
|
存储 人工智能 分布式计算
湖仓实时化升级 :Uniflow 构建流批一体实时湖仓
本文整理自阿里云产品经理李昊哲在Flink Forward Asia 2024流批一体专场的分享,涵盖实时湖仓发展趋势、基于Flink搭建流批一体实时湖仓及Materialized Table优化三方面。首先探讨了实时湖仓的发展趋势和背景,特别是阿里云在该领域的领导地位。接着介绍了Uniflow解决方案,通过Flink CDC、Paimon存储等技术实现低成本、高性能的流批一体处理。最后,重点讲解了Materialized Table如何简化用户操作,提升数据查询和补数体验,助力企业高效应对不同业务需求。
299 17
湖仓实时化升级 :Uniflow 构建流批一体实时湖仓
|
15天前
|
人工智能 自然语言处理 API
阿里云百炼xWaytoAGI共学课DAY1 - 必须了解的企业级AI应用开发知识点
本课程旨在介绍阿里云百炼大模型平台的核心功能和应用场景,帮助开发者和技术小白快速上手,体验AI的强大能力,并探索企业级AI应用开发的可能性。