分布式系统架构8:分布式缓存

本文涉及的产品
可观测可视化 Grafana 版,10个用户账号 1个月
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
云原生网关 MSE Higress,422元/月
简介: 本文介绍了分布式缓存的理论知识及Redis集群的应用,探讨了AP与CP的区别,Redis作为AP系统具备高性能和高可用性但不保证强一致性。文章还讲解了透明多级缓存(TMC)的概念及其优缺点,并详细分析了memcached和Redis的分布式实现方案。此外,针对缓存穿透、击穿、雪崩和污染等常见问题提供了应对策略,强调了Cache Aside模式在解决数据一致性方面的作用。最后指出,面试中关于缓存的问题多围绕Redis展开,建议深入学习相关知识点。

这是小卷对分布式系统架构学习的第11篇文章,今天了解分布式缓存的理论知识以及Redis集群。

分布式缓存也是面试常见的问题,通常面试官会问为什么要用缓存,以及用的Redis是哪种模式,用的过程中遇到哪些问题这些

1. AP还是CP

Redis 集群就是典型的 AP 式,它具有高性能、高可用等特点,但它却并不保证强一致性。

而能够保证强一致性的 ZooKeeper、Doozerd、Etcd 等框架,吞吐量比不过Redis,通常不会用作“缓存框架”,而是作为通知、协调、队列、分布式锁等使用

2.透明多级缓存TMC

实际开发中,同时搭配进程内缓存和分布式缓存,来构成透明多级缓存(Transparent Multilevel Cache,TMC)

多级缓存的查询过程如下图:

分布式缓存1.png

缺点:代码侵入性大,由开发人员维护管理

一、二级缓存数据不一致问题解决:

  • 设计原则:变更以分布式缓存中的数据为准,查询以进程内缓存数据优先

3.实现方案

3.1 memcached缓存

在服务端,memcached集群环境实际就是一个个memcached服务器的堆积

cache的分布式主要是在客户端实现,通过客户端的路由处理来达到分布式解决方案的目的。客户端做路由的原理,是在每次存取某key的value时,通过一致性哈希算法把key映射到某台memcached服务器node上。

如下是memcached客户端路由过程:

分布式缓存2.png

3.2 Redis缓存

与memcached客户端支持分布式方案不同,Redis更倾向于在服务端构建分布式存储

分布式缓存3.png

分布式缓存4.png

  • 以Redis集群模式为例,它没有中心节点,具有线性可伸缩的功能。

  • 节点与节点之间通过二进制协议进行通信,节点与客户端之间通过ascii协议进行通信

  • 在数据的放置策略上,Redis Cluster将整个key的数值域分成2的14次方16384个hash槽,每个节点上可以存储一个或多个hash槽,也就是说当前Redis Cluster支持的最大节点数就是16384
  • 总结下:数据hash分布在不同redis节点实例,主/从切换采用Sentinel
  • 写:只会写master Instance,从sentinel获取当前的master instance;
  • 读:从redis node中基于权重选取一个实例读取,失败/超时则轮询其他实例;

要想详细了解redis的面试过程中的问题,可以参考下面的思维导图自行整理:

分布式缓存5.png

4. 缓存风险

4.1 缓存穿透

缓存风险问题也是面试常考的八股文题目,这里还是简单说明下

缓存穿透:查询的数据在数据库里根本不存在,缓存里也不会有,这样的请求每次都不会命中缓存,会请求到末端数据库。这种查询不存在数据的现象就是缓存穿透

解决办法:

  • 对业务逻辑本身不能避免的缓存穿透:对返回为空的Key值进行缓存,如果数据库中对该key插入新记录,就需要主动清理缓存的key值。
  • 恶意攻击导致的缓存穿透:缓存之前设置一个布隆过滤器来解决,思路就是判断请求的数据是否存在,布隆过滤器可以判断某个元素是否在集合中

4.2 缓存击穿

概念:单个热点key失效,在失效的那一刻,同时有大量请求打到DB上,造成数据库压力剧增的情况

解决办法:

  • 设置热点key不过期定时任务更新缓存或者设置互斥锁,当请求过来时,发现缓存不存在数据时,就给当前请求加锁,后面的请求等待或者返回,当从数据库中拿出来放到缓存中时,就可以释放锁资源。

4.3 缓存雪崩

概念:多个热点key缓存失效,大量的key设置了相同的过期时间、导致缓存在同一时间全部失效,造成瞬时DB请求量大、压力剧增。

解决办法:

  • 存数据的过期时间设置随机,防止同一时间大量数据过期现象发生
  • 启用透明多级缓存,多个服务节点因为加载一级缓存的时间不一样,也能分散过期时间

4.4 缓存污染

概念:缓存中的数据与真实数据源中的数据不一致的现象

解决办法:

使用更新缓存时遵循的设计模式,如:Cache Aside,Read/Write Through,Write Behind Caching这些

Cache Aside模式的工作方式:

  • 读数据时,先读缓存,如缓存中没有,则读数据库,再将数据写入缓存中;
  • 写数据时,先写数据库,然后失效缓存(删除缓存数据);

面试可能遇到的两个关于Cache Aside的问题:

1.更新先后顺序,为什么先更新数据库再删除缓存?

  • 假设先删除缓存再更新数据库,会有一段时间是缓存已删除,数据库未更新的情况。这时如果有请求进来,缓存中没查到,就会查数据库中旧的数据,再放到缓存里。造成问题就是:数据库已经是最新数据,缓存中还是旧的,不一致的问题;

2.为什么是删除缓存,而不是更新缓存?

  • 和上面一样,更新过程中,如果有其他更新请求进来更新数据库,缓存就会面临多次修改赋值的复杂时序问题。所以直接删除缓存就行。

总结:本文只写了一些关于分布式缓存的简单理论内容,实际面试时大多围绕redis进行提问,下次再写关于redis的相关内容

相关文章
|
14天前
|
供应链 监控 安全
对话|企业如何构建更完善的容器供应链安全防护体系
阿里云与企业共筑容器供应链安全
171330 12
|
16天前
|
供应链 监控 安全
对话|企业如何构建更完善的容器供应链安全防护体系
随着云计算和DevOps的兴起,容器技术和自动化在软件开发中扮演着愈发重要的角色,但也带来了新的安全挑战。阿里云针对这些挑战,组织了一场关于云上安全的深度访谈,邀请了内部专家穆寰、匡大虎和黄竹刚,深入探讨了容器安全与软件供应链安全的关系,分析了当前的安全隐患及应对策略,并介绍了阿里云提供的安全解决方案,包括容器镜像服务ACR、容器服务ACK、网格服务ASM等,旨在帮助企业构建涵盖整个软件开发生命周期的安全防护体系。通过加强基础设施安全性、技术创新以及倡导协同安全理念,阿里云致力于与客户共同建设更加安全可靠的软件供应链环境。
150295 32
|
24天前
|
弹性计算 人工智能 安全
对话 | ECS如何构筑企业上云的第一道安全防线
随着中小企业加速上云,数据泄露、网络攻击等安全威胁日益严重。阿里云推出深度访谈栏目,汇聚产品技术专家,探讨云上安全问题及应对策略。首期节目聚焦ECS安全性,提出三道防线:数据安全、网络安全和身份认证与权限管理,确保用户在云端的数据主权和业务稳定。此外,阿里云还推出了“ECS 99套餐”,以高性价比提供全面的安全保障,帮助中小企业安全上云。
201961 14
对话 | ECS如何构筑企业上云的第一道安全防线
|
2天前
|
机器学习/深度学习 自然语言处理 PyTorch
深入剖析Transformer架构中的多头注意力机制
多头注意力机制(Multi-Head Attention)是Transformer模型中的核心组件,通过并行运行多个独立的注意力机制,捕捉输入序列中不同子空间的语义关联。每个“头”独立处理Query、Key和Value矩阵,经过缩放点积注意力运算后,所有头的输出被拼接并通过线性层融合,最终生成更全面的表示。多头注意力不仅增强了模型对复杂依赖关系的理解,还在自然语言处理任务如机器翻译和阅读理解中表现出色。通过多头自注意力机制,模型在同一序列内部进行多角度的注意力计算,进一步提升了表达能力和泛化性能。
|
6天前
|
存储 人工智能 安全
对话|无影如何助力企业构建办公安全防护体系
阿里云无影助力企业构建办公安全防护体系
1251 8
|
7天前
|
人工智能 自然语言处理 程序员
通义灵码2.0全新升级,AI程序员全面开放使用
通义灵码2.0来了,成为全球首个同时上线JetBrains和VSCode的AI 程序员产品!立即下载更新最新插件使用。
1291 24
|
9天前
|
机器学习/深度学习 自然语言处理 搜索推荐
自注意力机制全解析:从原理到计算细节,一文尽览!
自注意力机制(Self-Attention)最早可追溯至20世纪70年代的神经网络研究,但直到2017年Google Brain团队提出Transformer架构后才广泛应用于深度学习。它通过计算序列内部元素间的相关性,捕捉复杂依赖关系,并支持并行化训练,显著提升了处理长文本和序列数据的能力。相比传统的RNN、LSTM和GRU,自注意力机制在自然语言处理(NLP)、计算机视觉、语音识别及推荐系统等领域展现出卓越性能。其核心步骤包括生成查询(Q)、键(K)和值(V)向量,计算缩放点积注意力得分,应用Softmax归一化,以及加权求和生成输出。自注意力机制提高了模型的表达能力,带来了更精准的服务。
|
7天前
|
消息中间件 人工智能 运维
1月更文特别场——寻找用云高手,分享云&AI实践
我们寻找你,用云高手,欢迎分享你的真知灼见!
564 22
1月更文特别场——寻找用云高手,分享云&AI实践
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
|
12天前
|
人工智能 自然语言处理 API
阿里云百炼xWaytoAGI共学课DAY1 - 必须了解的企业级AI应用开发知识点
本课程旨在介绍阿里云百炼大模型平台的核心功能和应用场景,帮助开发者和技术小白快速上手,体验AI的强大能力,并探索企业级AI应用开发的可能性。