基于GA遗传优化的WSN网络最优节点部署算法matlab仿真

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。

1.程序功能描述
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真,通过遗传优化,获得最少得节点数量,达到最大的节点覆盖率。

2.测试软件版本以及运行结果展示
MATLAB2022A版本运行

初始节点数量15:

1.jpeg
2.jpeg
3.jpeg

初始节点数量25:

4.jpeg
5.jpeg
6.jpeg

初始节点数量40:

7.jpeg
8.jpeg
9.jpeg

3.核心程序

```% 获取最佳解并绘制优化后的节点部署
[V,I] = min(Jit1);
Xbest = Xga(I,1:Nnode);
Ybest = Xga(I,1+Nnode:Nnode+Nnode);
Nbest = round(Xga(I,end));

subplot(122);

for i=1:Nbest
funccover([Xbest(i),Ybest(i)],rd,1000,'r');
hold on
x1
=Xbest(i)+rdcos(w);
y1_=Ybest(i)+rd
sin(w);
fill(x1,y1,'g','FaceAlpha',0.3)
plot(Xbest(i),Ybest(i),'b.');
hold on
i=i+1;
end
axis([0,width,0,high]);

[Coverage1,Coverage2] = func_fitness(Xbest,Ybest,Nbest);
title(['优化后','WSN节点数量:',num2str(Nbest),',WSN覆盖率:',num2str(100*Coverage1),'%']);

figure;
subplot(121);
bar([Nnode,Nbest]);
xlabel('1:优化前, 2:优化后');
ylabel('节点数量');

subplot(122);
bar([100Coverage1b,100Coverage1]);
xlabel('1:优化前, 2:优化后');
ylabel('覆盖率%');

% 绘制适应度变化曲线
figure
plot(Favg,'b','linewidth',1); % 平均适应度曲线
xlabel('迭代次数');
ylabel('适应度值');
grid on
51

```

4.本算法原理
无线传感器网络(Wireless Sensor Network, WSN)的最优节点部署问题旨在通过合理配置传感器节点的位置,以达到特定的网络覆盖或其他性能指标的最大化。遗传算法(Genetic Algorithm, GA)作为一种启发式优化算法,能够有效解决这类复杂的优化问题。

4.1 遗传算法基础
遗传算法灵感来源于自然界生物进化过程中的遗传和自然选择机制,主要包括以下几个核心步骤:初始化、选择、交叉、变异。

初始化:随机生成初始种群,每个个体代表一个可能的解决方案,即一组传感器节点的位置配置。
评估:根据一定的评价函数(fitness function)计算每个个体的适应度,该函数反映了该解决方案满足目标性能指标的程度。
选择:根据个体的适应度进行选择,适应度高的个体有更高的概率被选中作为“父母”参与下一代的繁殖。
交叉:通过交叉操作交换“父母”个体的部分基因,生成新的“子代”个体,以引入多样性。
变异:以一定概率对子代个体的某些基因进行随机修改,进一步增加种群的多样性。
4.2 WSN节点部署问题建模
设WSN的监测区域为 D⊂R2,需要部署 N 个传感器节点,每个节点 i 的位置为pi​=(xi​,yi​)∈D。假设每个节点的感知范围为R,覆盖目标区域的期望程度可以用覆盖度C 来衡量,通常定义为被至少一个节点覆盖的区域面积与整个监测区域面积的比值。

4.3 适应度函数设计
适应度函数F(p1​,p2​,...,pN​) 应反映网络的覆盖效率及可能的其他约束条件。一个简单的覆盖度最大化适应度函数可以表示为:

8318fbbf9a295f0f9abccfc7b223fe6d_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

在实际设计过程中,一般采用网格化方式,来计算覆盖率。

相关文章
|
2天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
1天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
14 4
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
2天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。
|
1天前
|
存储 监控 算法
局域网网络管控里 Node.js 红黑树算法的绝妙运用
在数字化办公中,局域网网络管控至关重要。红黑树作为一种自平衡二叉搜索树,凭借其高效的数据管理和平衡机制,在局域网设备状态管理中大放异彩。通过Node.js实现红黑树算法,可快速插入、查找和更新设备信息(如IP地址、带宽等),确保网络管理员实时监控和优化网络资源,提升局域网的稳定性和安全性。未来,随着技术融合,红黑树将在网络管控中持续进化,助力构建高效、安全的局域网络生态。
21 9
|
1天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
247 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
147 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
117 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
8月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)