Qwen2-VL微调实战:LaTex公式OCR识别任务(完整代码)

本文涉及的产品
NLP自然语言处理_高级版,每接口累计50万次
视觉智能开放平台,视频资源包5000点
NLP自然语言处理_基础版,每接口每天50万次
简介: 《SwanLab机器学习实战教程》推出了一项基于Qwen2-VL大语言模型的LaTeX OCR任务,通过指令微调实现多模态LLM的应用。本教程详述了环境配置、数据集准备、模型加载、SwanLab集成及微调训练等步骤,旨在帮助开发者轻松上手视觉大模型的微调实践。

《SwanLab机器学习实战教程》是一个主打「开箱即用」的AI训练系列教程,我们致力于提供完善的数据集、源代码、实验记录以及环境安装方式,手把手帮助你跑起训练,解决问题。

Qwen2-VL是通义千问团队最近开源的大语言模型,由阿里云通义实验室研发。

以Qwen2-VL作为基座多模态大模型,通过指令微调的方式实现特定场景下的OCR,是学习多模态LLM微调的入门任务。

1.png1.png

本文我们将简要介绍基于 transformers、peft 等框架,使用 Qwen2-VL-2B-Instruct 模型在LaTeX_OCR 上进行Lora微调训练,同时使用 SwanLab 监控训练过程与评估模型效果。

目录

📖 知识点:视觉大模型微调的场景与用法

视觉大模型是指能够支持图片/视频输入的大语言模型,能够极大丰富与LLM的交互方式。

对视觉大模型做微调的一个典型场景,是让它特化成一个更强大、更智能的计算机视觉模型,执行图像分类、目标检测、语义分割、OCR、图像描述任务等等。

并且由于视觉大模型强大的基础能力,所以训练流程变得非常统一——无论是分类、检测还是分割,只需要构建好数据对(图像 -> 文本),都可以用同一套代码完成,相比以往针对不同任务就要构建迥异的训练代码而言,视觉大模型微调要简单粗暴得多,而且效果还更好。

当然,硬币的另一面是要承担更高的计算开销,但在大模型逐渐轻量化的趋势下,可以预想这种训练范式将逐渐成为主流。

🌍 环境配置

环境配置分为三步:

  1. 确保你的电脑上至少有一张英伟达显卡,并已安装好了CUDA环境。
  2. 安装Python(版本>=3.8)以及能够调用CUDA加速的PyTorch
  3. 安装与Qwen2-VL微调相关的第三方库,可以使用以下命令:
python -m pip install --upgrade pip
# 更换 pypi 源,加速库的安装
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

pip install modelscope==1.18.0
pip install transformers==4.46.2
pip install sentencepiece==0.2.0
pip install accelerate==1.1.1
pip install datasets==2.18.0
pip install peft==0.13.2
pip install swanlab==0.3.27
pip install qwen-vl-utils==0.0.8
pip install pandas==2.2.2

📚 准备数据集

本节使用的是 LaTex_OCR 数据集,这个数据集包含了大量的数学公式图片,以及对应的LaTex语法字符串。可以看到,下图中的image就是学术公式图,text就是对应的LaTex语法字符串:

2.png2.png

将这些LaTex语法字符串粘贴到latexlive中,可以预览对应的数学公式:

3.png3.png

了解了数据集结构之后,我们需要做的是将这些数据整理成Qwen2-VL需要的json格式,下面是目标的格式:

[
  {
   
    "id": "identity_1",
    "conversations": [
      {
   
        "role": "user",
        "value": "图片路径"
      },
      {
   
        "role": "assistant",
        "value": "LaTex公式"
      }
    ]  
  },
...
]

我们来解读一下这个json:

  • id:数据对的编号
  • conversations:人类与LLM的对话,类型是列表
  • role:角色,user代表人类,assistant代表模型
  • content:聊天发送的内容,其中user的value是图片路径,assistant的回复是LaTex公式

接下来让我们下载数据集并进行处理:

  1. 我们需要做四件事情:
    • 通过Modelscope下载LaTex_OCR数据集
    • 加载数据集,将图像保存到本地
    • 将图像路径和描述文本转换为一个csv文件
    • 将csv文件转换为json文件,包含1个训练集和验证集
  2. 使用下面的代码完成从数据下载到生成csv的过程:

data2csv.py:

# 导入所需的库
from modelscope.msdatasets import MsDataset
import os
import pandas as pd

MAX_DATA_NUMBER = 1000
dataset_id = 'AI-ModelScope/LaTeX_OCR'
subset_name = 'default'
split = 'train'

dataset_dir = 'LaTeX_OCR'
csv_path = './latex_ocr_train.csv'


# 检查目录是否已存在
if not os.path.exists(dataset_dir):
    # 从modelscope下载COCO 2014图像描述数据集
    ds =  MsDataset.load(dataset_id, subset_name=subset_name, split=split)
    print(len(ds))
    # 设置处理的图片数量上限
    total = min(MAX_DATA_NUMBER, len(ds))

    # 创建保存图片的目录
    os.makedirs(dataset_dir, exist_ok=True)

    # 初始化存储图片路径和描述的列表
    image_paths = []
    texts = []

    for i in range(total):
        # 获取每个样本的信息
        item = ds[i]
        text = item['text']
        image = item['image']

        # 保存图片并记录路径
        image_path = os.path.abspath(f'{dataset_dir}/{i}.jpg')
        image.save(image_path)

        # 将路径和描述添加到列表中
        image_paths.append(image_path)
        texts.append(text)

        # 每处理50张图片打印一次进度
        if (i + 1) % 50 == 0:
            print(f'Processing {i+1}/{total} images ({(i+1)/total*100:.1f}%)')

    # 将图片路径和描述保存为CSV文件
    df = pd.DataFrame({
   
        'image_path': image_paths,
        'text': texts,
    })

    # 将数据保存为CSV文件
    df.to_csv(csv_path, index=False)

    print(f'数据处理完成,共处理了{total}张图片')

else:    
    print(f'{dataset_dir}目录已存在,跳过数据处理步骤')

3. 在同一目录下,用以下代码,将csv文件转换为json文件(训练集+验证集):

csv2json.py:

import pandas as pd
import json

csv_path = './latex_ocr_train.csv'
train_json_path = './latex_ocr_train.json'
val_json_path = './latex_ocr_val.json'
df = pd.read_csv(csv_path)
# Create conversation format
conversations = []

# Add image conversations
for i in range(len(df)):
    conversations.append({
   
        "id": f"identity_{i+1}",
        "conversations": [
            {
   
                "role": "user",
                "value": f"{df.iloc[i]['image_path']}"
            },
            {
   
                "role": "assistant", 
                "value": str(df.iloc[i]['text'])
            }
        ]
    })

# print(conversations)
# Save to JSON
# Split into train and validation sets
train_conversations = conversations[:-4]
val_conversations = conversations[-4:]

# Save train set
with open(train_json_path, 'w', encoding='utf-8') as f:
    json.dump(train_conversations, f, ensure_ascii=False, indent=2)

# Save validation set 
with open(val_json_path, 'w', encoding='utf-8') as f:
    json.dump(val_conversations, f, ensure_ascii=False, indent=2)

此时目录下会多出3个文件:

  • latex_ocr_train.csv
  • latex_ocr_train.json
  • latex_ocr_val.json

至此,我们完成了数据集的准备。

🤖 模型下载与加载

这里我们使用modelscope下载Qwen2-VL-2B-Instruct模型,然后把它加载到Transformers中进行训练:

from modelscope import snapshot_download, AutoTokenizer
from transformers import TrainingArguments, Trainer, DataCollatorForSeq2Seq, Qwen2VLForConditionalGeneration, AutoProcessor
import torch

# 在modelscope上下载Qwen2-VL模型到本地目录下
model_dir = snapshot_download("Qwen/Qwen2-VL-2B-Instruct", cache_dir="./", revision="master")

# 使用Transformers加载模型权重
tokenizer = AutoTokenizer.from_pretrained("./Qwen/Qwen2-VL-2B-Instruct/", use_fast=False, trust_remote_code=True)
# 特别的,Qwen2-VL-2B-Instruct模型需要使用Qwen2VLForConditionalGeneration来加载
model = Qwen2VLForConditionalGeneration.from_pretrained("./Qwen/Qwen2-VL-2B-Instruct/", device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True,)
model.enable_input_require_grads()  # 开启梯度检查点时,要执行该方法

模型大小为 4.5GB,下载模型大概需要 5 分钟。

🐦‍ 集成SwanLab

4.png4.png

SwanLab 是一个开源的模型训练记录工具,常被称为"中国版 Weights\&Biases + Tensorboard"。SwanLab面向AI研究者,提供了训练可视化、自动日志记录、超参数记录、实验对比、多人协同等功能。在SwanLab上,研究者能基于直观的可视化图表发现训练问题,对比多个实验找到研究灵感,并通过在线链接的分享与基于组织的多人协同训练,打破团队沟通的壁垒。

SwanLab与Transformers已经做好了集成,用法是在Trainer的callbacks参数中添加SwanLabCallback实例,就可以自动记录超参数和训练指标,简化代码如下:

from swanlab.integration.transformers import SwanLabCallback
from transformers import Trainer

swanlab_callback = SwanLabCallback()

trainer = Trainer(
    ...
    callbacks=[swanlab_callback],
)

首次使用SwanLab,需要先在官网注册一个账号,然后在用户设置页面复制你的API Key,然后在训练开始提示登录时粘贴即可,后续无需再次登录:

5.png5.png

更多用法可参考快速开始Transformers集成

🚀 开始微调(完整代码)

查看可视化训练过程:ZeyiLin/Qwen2-VL-ft-latexocr

本节代码做了以下几件事:

  1. 下载并加载Qwen2-VL-2B-Instruct模型
  2. 加载数据集,取前996条数据参与训练,4条数据进行主观评测
  3. 配置Lora,参数为r=64, lora_alpha=16, lora_dropout=0.05
  4. 使用SwanLab记录训练过程,包括超参数、指标和最终的模型输出结果
  5. 训练2个epoch

开始执行代码时的目录结构应该是:

|———— train.py
|———— data2csv.py
|———— csv2json.py
|———— latex_ocr_train.csv
|———— latex_ocr_train.json
|———— latex_ocr_val.json

完整代码如下

train.py:

import torch
from datasets import Dataset
from modelscope import snapshot_download, AutoTokenizer
from swanlab.integration.transformers import SwanLabCallback
from qwen_vl_utils import process_vision_info
from peft import LoraConfig, TaskType, get_peft_model, PeftModel
from transformers import (
    TrainingArguments,
    Trainer,
    DataCollatorForSeq2Seq,
    Qwen2VLForConditionalGeneration,
    AutoProcessor,
)
import swanlab
import json
import os


prompt = "你是一个LaText OCR助手,目标是读取用户输入的照片,转换成LaTex公式。"
model_id = "Qwen/Qwen2-VL-2B-Instruct"
local_model_path = "./Qwen/Qwen2-VL-2B-Instruct"
train_dataset_json_path = "latex_ocr_train.json"
val_dataset_json_path = "latex_ocr_val.json"
output_dir = "./output/Qwen2-VL-2B-LatexOCR"
MAX_LENGTH = 8192

def process_func(example):
    """
    将数据集进行预处理
    """
    input_ids, attention_mask, labels = [], [], []
    conversation = example["conversations"]
    image_file_path = conversation[0]["value"]
    output_content = conversation[1]["value"]

    messages = [
        {
   
            "role": "user",
            "content": [
                {
   
                    "type": "image",
                    "image": f"{image_file_path}",
                    "resized_height": 500,
                    "resized_width": 100,
                },
                {
   "type": "text", "text": prompt},
            ],
        }
    ]
    text = processor.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )  # 获取文本
    image_inputs, video_inputs = process_vision_info(messages)  # 获取数据数据(预处理过)
    inputs = processor(
        text=[text],
        images=image_inputs,
        videos=video_inputs,
        padding=True,
        return_tensors="pt",
    )
    inputs = {
   key: value.tolist() for key, value in inputs.items()} #tensor -> list,为了方便拼接
    instruction = inputs

    response = tokenizer(f"{output_content}", add_special_tokens=False)


    input_ids = (
            instruction["input_ids"][0] + response["input_ids"] + [tokenizer.pad_token_id]
    )

    attention_mask = instruction["attention_mask"][0] + response["attention_mask"] + [1]
    labels = (
            [-100] * len(instruction["input_ids"][0])
            + response["input_ids"]
            + [tokenizer.pad_token_id]
    )
    if len(input_ids) > MAX_LENGTH:  # 做一个截断
        input_ids = input_ids[:MAX_LENGTH]
        attention_mask = attention_mask[:MAX_LENGTH]
        labels = labels[:MAX_LENGTH]

    input_ids = torch.tensor(input_ids)
    attention_mask = torch.tensor(attention_mask)
    labels = torch.tensor(labels)
    inputs['pixel_values'] = torch.tensor(inputs['pixel_values'])
    inputs['image_grid_thw'] = torch.tensor(inputs['image_grid_thw']).squeeze(0)  #由(1,h,w)变换为(h,w)
    return {
   "input_ids": input_ids, "attention_mask": attention_mask, "labels": labels,
            "pixel_values": inputs['pixel_values'], "image_grid_thw": inputs['image_grid_thw']}


def predict(messages, model):
    # 准备推理
    text = processor.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )
    image_inputs, video_inputs = process_vision_info(messages)
    inputs = processor(
        text=[text],
        images=image_inputs,
        videos=video_inputs,
        padding=True,
        return_tensors="pt",
    )
    inputs = inputs.to("cuda")

    # 生成输出
    generated_ids = model.generate(**inputs, max_new_tokens=MAX_LENGTH)
    generated_ids_trimmed = [
        out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
    ]
    output_text = processor.batch_decode(
        generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
    )

    return output_text[0]


# 在modelscope上下载Qwen2-VL模型到本地目录下
model_dir = snapshot_download(model_id, cache_dir="./", revision="master")

# 使用Transformers加载模型权重
tokenizer = AutoTokenizer.from_pretrained(local_model_path, use_fast=False, trust_remote_code=True)
processor = AutoProcessor.from_pretrained(local_model_path)

origin_model = Qwen2VLForConditionalGeneration.from_pretrained(local_model_path, device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True,)
origin_model.enable_input_require_grads()  # 开启梯度检查点时,要执行该方法

# 处理数据集:读取json文件
train_ds = Dataset.from_json(train_dataset_json_path)
train_dataset = train_ds.map(process_func)

# 配置LoRA
config = LoraConfig(
    task_type=TaskType.CAUSAL_LM,
    target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
    inference_mode=False,  # 训练模式
    r=64,  # Lora 秩
    lora_alpha=16,  # Lora alaph,具体作用参见 Lora 原理
    lora_dropout=0.05,  # Dropout 比例
    bias="none",
)

# 获取LoRA模型
train_peft_model = get_peft_model(origin_model, config)

# 配置训练参数
args = TrainingArguments(
    output_dir=output_dir,
    per_device_train_batch_size=4,
    gradient_accumulation_steps=4,
    logging_steps=10,
    logging_first_step=10,
    num_train_epochs=2,
    save_steps=100,
    learning_rate=1e-4,
    save_on_each_node=True,
    gradient_checkpointing=True,
    report_to="none",
)

# 设置SwanLab回调
swanlab_callback = SwanLabCallback(
    project="Qwen2-VL-ft-latexocr",
    experiment_name="7B-1kdata",
    config={
   
        "model": "https://modelscope.cn/models/Qwen/Qwen2-VL-7B-Instruct",
        "dataset": "https://modelscope.cn/datasets/AI-ModelScope/LaTeX_OCR/summary",
        # "github": "https://github.com/datawhalechina/self-llm",
        "model_id": model_id,
        "train_dataset_json_path": train_dataset_json_path,
        "val_dataset_json_path": val_dataset_json_path,
        "output_dir": output_dir,
        "prompt": prompt,
        "train_data_number": len(train_ds),
        "token_max_length": MAX_LENGTH,
        "lora_rank": 64,
        "lora_alpha": 16,
        "lora_dropout": 0.1,
    },
)

# 配置Trainer
trainer = Trainer(
    model=train_peft_model,
    args=args,
    train_dataset=train_dataset,
    data_collator=DataCollatorForSeq2Seq(tokenizer=tokenizer, padding=True),
    callbacks=[swanlab_callback],
)

# 开启模型训练
trainer.train()

# ====================测试===================
# 配置测试参数
val_config = LoraConfig(
    task_type=TaskType.CAUSAL_LM,
    target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
    inference_mode=True,  # 训练模式
    r=64,  # Lora 秩
    lora_alpha=16,  # Lora alaph,具体作用参见 Lora 原理
    lora_dropout=0.05,  # Dropout 比例
    bias="none",
)

# 获取测试模型,从output_dir中获取最新的checkpoint
load_model_path = f"{output_dir}/checkpoint-{max([int(d.split('-')[-1]) for d in os.listdir(output_dir) if d.startswith('checkpoint-')])}"
print(f"load_model_path: {load_model_path}")
val_peft_model = PeftModel.from_pretrained(origin_model, model_id=load_model_path, config=val_config)

# 读取测试数据
with open(val_dataset_json_path, "r") as f:
    test_dataset = json.load(f)

test_image_list = []
for item in test_dataset:
    image_file_path = item["conversations"][0]["value"]
    label = item["conversations"][1]["value"]

    messages = [{
   
        "role": "user", 
        "content": [
            {
   
            "type": "image", 
            "image": image_file_path,
            "resized_height": 100,
            "resized_width": 500,   
            },
            {
   
            "type": "text",
            "text": prompt,
            }
        ]}]

    response = predict(messages, val_peft_model)

    print(f"predict:{response}")
    print(f"gt:{label}\n")

    test_image_list.append(swanlab.Image(image_file_path, caption=response))

swanlab.log({
   "Prediction": test_image_list})

# 在Jupyter Notebook中运行时要停止SwanLab记录,需要调用swanlab.finish()
swanlab.finish()

看到下面的进度条即代表训练开始:

6.png6.png

💻 训练结果演示

详细训练过程请看这里:ZeyiLin/Qwen2-VL-ft-latexocr

7.png7.png

从SwanLab图表中我们可以看到,学习率的下降策略是线性下降,loss随epoch呈现下降趋势,同时grad_norm也呈现下降趋势。这种形态反映了模型的训练效果是符合预期的。

Prediction图表中记录着模型最终的输出结果,可以看到模型在回答的风格已经是标准的LaTex语法。

8.png8.png

对这四个结果进行验证,跟输入图像完成一致。

9.png9.png

10.png10.png

那么与没有微调的模型进行效果对比,我们选择997.jpg:

11.png11.png

没有微调:(10,10),(989,989)
微调后:\mathrm { t r i e s } \left( \vec { \Phi } _ { A } ^ { ( 3 ) } \right) = ( g h _ { 1 } \left( \Phi ^ { A } \right) + 1 , g h _ { 2 } \left( \Phi ^ { A } \right) + 1 , g h _ { 3 } \left( \Phi ^ { A } \right) )

可以看到没有微调的模型,对于这张图片的输出明显是错误的;

而微调后的模型,有着非常完美表现:

12.png12.png

🧐 推理LoRA微调后的模型

加载lora微调后的模型,并进行推理:

from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
from peft import PeftModel, LoraConfig, TaskType

prompt = "你是一个LaText OCR助手,目标是读取用户输入的照片,转换成LaTex公式。"
local_model_path = "./Qwen/Qwen2-VL-2B-Instruct"
lora_model_path = "./output/Qwen2-VL-2B-LatexOCR/checkpoint-124"
test_image_path = "./LaTeX_OCR/997.jpg"

config = LoraConfig(
    task_type=TaskType.CAUSAL_LM,
    target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
    inference_mode=True,
    r=64,  # Lora 秩
    lora_alpha=16,  # Lora alaph,具体作用参见 Lora 原理
    lora_dropout=0.05,  # Dropout 比例
    bias="none",
)

# default: Load the model on the available device(s)
model = Qwen2VLForConditionalGeneration.from_pretrained(
    local_model_path, torch_dtype="auto", device_map="auto"
)

model = PeftModel.from_pretrained(model, model_id=f"{lora_model_path}", config=config)
processor = AutoProcessor.from_pretrained(local_model_path)

messages = [
    {
   
        "role": "user",
        "content": [
            {
   
                "type": "image",
                "image": test_image_path,
                "resized_height": 100,
                "resized_width": 500,
            },
            {
   "type": "text", "text": f"{prompt}"},
        ],
    }
]

# Preparation for inference
text = processor.apply_chat_template(
    messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
    text=[text],
    images=image_inputs,
    videos=video_inputs,
    padding=True,
    return_tensors="pt",
)
inputs = inputs.to("cuda")

# Inference: Generation of the output
generated_ids = model.generate(**inputs, max_new_tokens=8192)
generated_ids_trimmed = [
    out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
    generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)

print(output_text[0])

#

补充

详细硬件配置和参数说明

使用4张A100 40GB显卡(总显存占用大约),batch size为4,gradient accumulation steps为4,训练2个epoch的用时为8分钟51秒。

13.png13.png

14.png14.png

注意

  • 在微调脚本中,val_peft_model加载的是一共固定的checkpoint文件,如果你添加了数据或超参数,请根据实际情况修改checkpoint文件路径。
相关文章
|
4月前
|
文字识别 计算机视觉 开发者
基于QT的OCR和opencv融合框架FastOCRLearn实战
本文介绍了在Qt环境下结合OpenCV库构建OCR识别系统的实战方法,通过FastOCRLearn项目,读者可以学习Tesseract OCR的编译配置和在Windows平台下的实践步骤,文章提供了技术资源链接,帮助开发者理解并实现OCR技术。
204 9
基于QT的OCR和opencv融合框架FastOCRLearn实战
|
20天前
|
文字识别 测试技术 API
实战阿里通义灵码极速编程-截屏-OCR-Ollama篇代码
该代码实现了一个截屏测试工具,结合了鼠标事件监听、屏幕截图和OCR功能。用户可通过拖动鼠标选择屏幕区域进行截图,并将截图转换为Markdown格式的文本内容。具体步骤包括:初始化大模型客户端、编码图像为Base64格式、捕获指定屏幕区域并保存截图、调用大模型API进行OCR识别并输出Markdown格式的内容。
73 9
|
20天前
|
文字识别 程序员 C++
实战阿里通义灵码极速编程-截屏-OCR-OLlama篇
通过实际案例展示阿里通义灵码如何极大提高编程效率。以开发屏幕截图OCR Python程序为例,使用Win10、Anaconda3、VS Code及通义灵码插件。经过四次提问与优化,从截屏选择矩形区域到调用大模型进行OCR识别,整个过程仅耗时半小时,最终形成可运行的控制台程序。加入界面开发后,总用时2小时,显著提升开发速度和质量。
82 5
|
4月前
|
编解码 人工智能 文字识别
阶跃星辰开源GOT-OCR2.0:统一端到端模型,魔搭一站式推理微调最佳实践来啦!
GOT来促进OCR-2.0的到来。该模型具有580百万参数,是一个统一、优雅和端到端的模型,由高压缩编码器和长上下文解码器组成。
阶跃星辰开源GOT-OCR2.0:统一端到端模型,魔搭一站式推理微调最佳实践来啦!
|
6月前
|
文字识别 Java Python
文本,文识08图片保存()上,最方便在于整体生成代码,serivce及实体类,base64编码保存图片文件,调用flask实现内部ocr接口,通过paddleocr识别,解析结果,base64转图片
文本,文识08图片保存()上,最方便在于整体生成代码,serivce及实体类,base64编码保存图片文件,调用flask实现内部ocr接口,通过paddleocr识别,解析结果,base64转图片
|
6月前
|
JSON 文字识别 数据格式
印刷文字识别使用问题之调用代码需要传入哪些参数
印刷文字识别产品,通常称为OCR(Optical Character Recognition)技术,是一种将图像中的印刷或手写文字转换为机器编码文本的过程。这项技术广泛应用于多个行业和场景中,显著提升文档处理、信息提取和数据录入的效率。以下是印刷文字识别产品的一些典型使用合集。
|
6月前
|
文字识别 自然语言处理 C#
印刷文字识别使用问题之C#发票识别的代码实例在哪里可以查看
印刷文字识别产品,通常称为OCR(Optical Character Recognition)技术,是一种将图像中的印刷或手写文字转换为机器编码文本的过程。这项技术广泛应用于多个行业和场景中,显著提升文档处理、信息提取和数据录入的效率。以下是印刷文字识别产品的一些典型使用合集。
|
6月前
|
文字识别 Java API
印刷文字识别操作报错合集之复制文字识别OCR的标注任务时出现报错,该怎么办
在使用印刷文字识别(OCR)服务时,可能会遇到各种错误。例如:1.Java异常、2.配置文件错误、3.服务未开通、4.HTTP错误码、5.权限问题(403 Forbidden)、6.调用拒绝(Refused)、7.智能纠错问题、8.图片质量或格式问题,以下是一些常见错误及其可能的原因和解决方案的合集。
|
6月前
|
文字识别 Java 开发工具
印刷文字识别操作报错合集之遇到错误代码为401,该怎么办
在使用印刷文字识别(OCR)服务时,可能会遇到各种错误。例如:1.Java异常、2.配置文件错误、3.服务未开通、4.HTTP错误码、5.权限问题(403 Forbidden)、6.调用拒绝(Refused)、7.智能纠错问题、8.图片质量或格式问题,以下是一些常见错误及其可能的原因和解决方案的合集。
|
6月前
|
人工智能 文字识别 开发工具
印刷文字识别使用问题之是否支持识别并返回文字在图片中的位置信息
印刷文字识别产品,通常称为OCR(Optical Character Recognition)技术,是一种将图像中的印刷或手写文字转换为机器编码文本的过程。这项技术广泛应用于多个行业和场景中,显著提升文档处理、信息提取和数据录入的效率。以下是印刷文字识别产品的一些典型使用合集。