【大模型入门系列2】本地win11部署通义千问大模型做RAG验证

本文涉及的产品
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_高级版,每接口累计50万次
视觉智能开放平台,视频资源包5000点
简介: 本文介绍了如何在本地环境中部署并使用大模型,特别是阿里巴巴云的Qwen1.5-0.5B-Chat模型。首先分析了本地化部署的重要性,包括数据安全、网络稳定性、定制化需求等方面。接着详细描述了环境准备过程,包括更新显卡驱动、安装CUDA、配置Python环境等。随后,文章展示了如何使用ModelScope Library加载模型,并通过Python脚本实现基本的对话功能。最后,探讨了私有化部署大模型的优势,如数据安全、定制化、效率提升等,为未来的探索指明方向。

一 背景

在之前我们通过使用千问的公网在线API,实现了对大模型的调用。但出于对数据安全与隐私保护、网络稳定性、定制化需求、监管合规、知识产权保护、自主可控性、业务连续性以及成本效益等多方面的考虑,在有些场景下,调用在线API的方法就不可行了,此时需要使用一些已经训练好的基模进行本地化部署。通过本地化部署,可以更好地满足自身特定需求,确保业务的合法、稳定、连续运行,并提高对模型的掌控能力。

这篇文章中,我们通过将模搭社区开源的大模型部署到本地,并实现简单的对话和RAG。

二 开发框架介绍

ModelScope Library

ModelScope Library是魔搭社区提供的一个能够快速、方便的使用社区提供的各类模型的Python library,其中包含了ModelScope官方模型的实现,以及使用这些模型进行推理,finetune等任务所需的数据预处理,后处理,效果评估等功能相关的代码,同时也提供了简单易用的API,以及丰富的使用样例。通过调用library,用户可以只写短短的几行代码,就可以完成模型的推理、训练和评估等任务,也可以在此基础上快速进行二次开发,实现自己的创新想法。本文中我们使用这个库进行模型的加载。

ModelScope Library支持的模型不光局限于huggingface的transformers架构类的模型,并且社区提供大量的中文大语言模型,更适合我们在国内下载,也方便学习及使用。

三 环境准备

1. 环境检查

本地实验环境:

系统:Win11

显卡:1070(8G显存)

首先更新显卡驱动到最新版本,可以去官网下载或者直接在NVIDIA Geforce Experience中直接更新驱动到最新版本,新版本的驱动向下兼容更多版本的CUDA。

image.png

查看显卡驱动支持的CUDA的最高版本,小于等于此版本的CUDA均可以使用。CMD或powershell中执行如下命令:

nvidia-smi

image.png


https://pytorch.org/查看当前最新版PyTorch支持最低Python版本为3.8,支持CUDA的11.8和12.1版本,后面我们选择安装12.1版本。

image.png

最终生成的命令可以拷贝出来,下文需要使用。

2. 安装CUDA 12.1(可选)

此步骤可选,不安装的话后面Torch会自动安装

下载地址:

https://developer.nvidia.com/cuda-12-1-1-download-archive

image.png

下载完成后直接安装即可,如果已经安装需要先卸载后再装。

3. 安装conda

conda可以用来管理Python环境,后面我们会使用conda创建一个Python3.10的运行环境。

下载地址:https://www.anaconda.com/download

安装完成后,为了能在命令行中使用,需要将conda的相关目录加入环境变量,例如安装在D:\developer\anaconda,则需要将以下目录添加到PATH中:

D:\developer\anaconda
D:\developer\anaconda\Scripts
D:\developer\anaconda\Library\bin
D:\developer\anaconda\Library\mingw-w64\bin

打开powershell,执行conda init初始化conda的powershell和cmd环境,linux下会初始化bash环境,初始化后方便进入conda创建的Python环境

4. 使用conda创建PyTorch环境

我们使用conda创建一个Python版本为3.10的Python运行环境,在命令行中执行如下命令:

conda create -n pytorch python=3.10
conda activate pytorch

使用上文中安装PyTorch的命令安装PyTorch

conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia

5. 下载模型

我们可以去模搭社区获取模型,国内的地址,下载速度快,不需要魔法可以直接访问。

模型库地址:https://modelscope.cn/models

这里使用Qwen1.5-0.5B-Chat这个对话模型进行体验,模型较小,占用内存少,生成速度快。

模型地址:https://modelscope.cn/models/qwen/Qwen1.5-0.5B-Chat/summary

image.png

点击模型文件 -> 下载模型,可支持两种下载方式:Sdk和Git

image.png

我们通过git的方式将模型文件下载到本地

mkdir Qwen && cd Qwen
git clone https://www.modelscope.cn/qwen/Qwen1.5-0.5B-Chat.git
cd ..

四 加载模型

1. 模型功能验证

可以使用modelscope Library加载模型,使用方法与transformers相同,使用AutoModelForCausalLM.from_pretrained方法和AutoTokenizer.from_pretrained从本地文件中加载,如果路径不存在,这两个方法会自动到modelscope下载模型文件。

需要先安装modelscope库:

pip install modelscope transformers

使用量化模型的话需要安装以下库:

pip install optimum auto-gptq

创建一个Python文件,放到与上文Qwen文件夹同级的目录中,内容如下:

from threading import Thread
from modelscope import (AutoModelForCausalLM, AutoTokenizer)
from transformers import TextIteratorStreamer
device = "cuda"  # 将模型加载到哪个硬件,此处为GPU
model = AutoModelForCausalLM.from_pretrained(
    "Qwen/Qwen1.5-0.5B-Chat", # 模型文件夹路径
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-0.5B-Chat")
while True:
    user_input = input("请输入问题(q退出):")
    if user_input.lower() == "q":
        print("exit")
        break
    try:
        messages = [
            {"role": "system", "content": "You are a helpful assistant."},
            {"role": "user", "content": user_input}
        ]
        text = tokenizer.apply_chat_template(
            messages,
            tokenize=False,
            add_generation_prompt=False
        )
        inputs = tokenizer([text], return_tensors="pt").to(device)
        streamer = TextIteratorStreamer(tokenizer)
        generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=512)
        thread = Thread(target=model.generate, kwargs=generation_kwargs)
        thread.start()
        generated_text = ""
        count = 0
        for new_text in streamer:
            generated_text += new_text
            print(new_text, end="", flush=True)
        print()
    except Exception as e:
        print(f"出错了:{str(e)}")

上面的代码首先从本地模型文件夹中加载了模型和分词器,然后我们在一个循环中接收用户输入,并将输入处理后通过大模型进行内容生成。我们可以通过python运行上面的文件,运行后,就可以测试了,就测试运行效果如下:

image.png

2. LangChain加载本地模型

到目前为止,我们已经在本地跑起来了一个千问0.5B大语言模型,接下来需要让langchain能够加载这个本地模型。

如果要用langchain加载模型,我们需要继承langchain.llms.base.LLM 类,并且重写_llm_type, _call方法,因为我们需要支持流式输出,就需要重写_stream方法。可参考langchain的官方文档:Custom LLM | 🦜️🔗 LangChain

下面是这个类的代码:

from abc import ABC
from threading import Thread
from typing import Any, List, Mapping, Optional, Iterator
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms.base import LLM
from langchain_core.outputs import GenerationChunk
from modelscope import AutoModelForCausalLM, AutoTokenizer
from transformers import TextIteratorStreamer
device = "cuda"  # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained(
    "Qwen/Qwen1.5-0.5B-Chat",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-0.5B-Chat")
class QwenLocalLLM(LLM, ABC):
    max_token: int = 10000
    temperature: float = 0.01
    top_p = 0.9
    def __init__(self):
        super().__init__()
    @property
    def _llm_type(self) -> str:
        return "Qwen"
    def _call(
            self,
            prompt: str,
            stop: Optional[List[str]] = None,
            run_manager: Optional[CallbackManagerForLLMRun] = None,
            **kwargs: Any
    ) -> str:
        messages = [
            {"role": "system", "content": "You are a helpful assistant."},
            {"role": "user", "content": prompt}
        ]
        text = tokenizer.apply_chat_template(
            messages,
            tokenize=False,
            add_generation_prompt=True
        )
        model_inputs = tokenizer([text], return_tensors="pt").to(device)
        generated_ids = model.generate(
            model_inputs.input_ids,
            max_new_tokens=512
        )
        generated_ids = [
            output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
        ]
        response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
        return response
    @property
    def _identifying_params(self) -> Mapping[str, Any]:
        """Get the identifying parameters."""
        return {"max_token": self.max_token,
                "temperature": self.temperature,
                "top_p": self.top_p,
                "history_len": self.history_len}
    def _stream(
            self,
            prompt: str,
            stop: Optional[List[str]] = None,
            run_manager: Optional[CallbackManagerForLLMRun] = None,
            **kwargs: Any,
    ) -> Iterator[GenerationChunk]:
        try:
            messages = [
                {"role": "system", "content": "You are a helpful assistant."},
                {"role": "user", "content": prompt}
            ]
            text = tokenizer.apply_chat_template(
                messages,
                tokenize=False,
                add_generation_prompt=False
            )
            inputs = tokenizer([text], return_tensors="pt").to(device)
            streamer = TextIteratorStreamer(tokenizer)
            generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=512)
            thread = Thread(target=model.generate, kwargs=generation_kwargs)
            thread.start()
            generated_text = ""
            for new_text in streamer:
                generated_text += new_text
                print(new_text, end="", flush=True)
                yield GenerationChunk(
                    text=new_text
                )
            print()
        except Exception as e:
            print(f"出错了:{str(e)}")
            yield GenerationChunk(
                text=f"生成失败: {str(e)}"
            )


五 后续方向

虽然私有化部署大模型花费的精力很多,但是大模型私有化部署的好处很多,比如:

数据安全:能够更好地保护企业的数据隐私和安全。

定制化:可以根据企业的具体需求进行定制和优化。

掌控权:企业对模型具有更大的掌控权,可以进行灵活的管理和调整。

效率提升:可针对企业特定业务流程进行优化,提高工作效率。

稳定性:减少对外部网络和服务的依赖,提高系统的稳定性。

合规性:有助于满足企业在数据隐私和安全方面的合规要求。

品牌建设:打造具有企业自身特色的人工智能解决方案,提升品牌形象。

资源优化:根据企业的实际情况进行资源分配和优化,避免不必要的浪费。

后续我们会继续学习探索。


相关实践学习
阿里云百炼xAnalyticDB PostgreSQL构建AIGC应用
通过该实验体验在阿里云百炼中构建企业专属知识库构建及应用全流程。同时体验使用ADB-PG向量检索引擎提供专属安全存储,保障企业数据隐私安全。
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
目录
相关文章
|
7月前
|
自然语言处理 搜索推荐 API
通义千问API:用4行代码对话大模型
本章将通过一个简单的例子,让你快速进入到通义千问大模型应用开发的世界。
通义千问API:用4行代码对话大模型
|
7月前
|
机器学习/深度学习 人工智能 算法
通义千问Qwen-72B-Chat大模型在PAI平台的微调实践
本文将以Qwen-72B-Chat为例,介绍如何在PAI平台的快速开始PAI-QuickStart和交互式建模工具PAI-DSW中高效微调千问大模型。
|
7月前
|
并行计算 PyTorch 算法框架/工具
社区供稿 | 本地部署通义千问大模型做RAG验证
这篇文章中,我们通过将模搭社区开源的大模型部署到本地,并实现简单的对话和RAG。
|
1天前
|
机器学习/深度学习 人工智能 API
【大模型入门系列5】免费使用PAI-DSW部署Qwen大模型进行推理部署微调验证
本文介绍了如何在阿里云PAI平台上本地部署Qwen大模型进行推理验证。首先,通过PAI平台申请免费试用DSW,选择支持资源包抵扣的GPU类型。接着,使用modelscope下载Qwen1.5-7B-Chat模型并进行推理验证。最后,利用vllm构建与OpenAI API兼容的服务,并通过OpenAI客户端接口进行请求验证,同时提供了微调验证的方法。
24 4
|
29天前
|
缓存 自然语言处理 并行计算
基于NVIDIA A30 加速卡推理部署通义千问-72B-Chat测试过程
本文介绍了基于阿里云通义千问72B大模型(Qwen-72B-Chat)的性能基准测试,包括测试环境准备、模型部署、API测试等内容。测试环境配置为32核128G内存的ECS云主机,配备8块NVIDIA A30 GPU加速卡。软件环境包括Ubuntu 22.04、CUDA 12.4.0、PyTorch 2.4.0等。详细介绍了模型下载、部署命令及常见问题解决方法,并展示了API测试结果和性能分析。
943 1
|
5月前
|
人工智能 前端开发 API
RAG+AI工作流+Agent:LLM框架该如何选择,全面对比MaxKB、Dify、FastGPT、RagFlow、Anything-LLM,以及更多推荐
【7月更文挑战第9天】RAG+AI工作流+Agent:LLM框架该如何选择,全面对比MaxKB、Dify、FastGPT、RagFlow、Anything-LLM,以及更多推荐
RAG+AI工作流+Agent:LLM框架该如何选择,全面对比MaxKB、Dify、FastGPT、RagFlow、Anything-LLM,以及更多推荐
|
4月前
|
API
求助:使用阿里的通义模型如何支持运行GraphRAG项目呢?
求助:使用阿里的通义模型如何支持运行GraphRAG项目呢?
101 1
|
6月前
|
机器学习/深度学习 算法 开发工具
通义千问2(Qwen2)大语言模型在PAI-QuickStart的微调、评测与部署实践
阿里云的人工智能平台PAI,作为一站式的机器学习和深度学习平台,对Qwen2模型系列提供了全面的技术支持。无论是开发者还是企业客户,都可以通过PAI-QuickStart轻松实现Qwen2系列模型的微调、评测和快速部署。
|
7月前
|
人工智能 算法 开发工具
通义千问Qwen-72B-Chat基于PAI的低代码微调部署实践
本文将以 Qwen-72B-Chat 为例,介绍如何通过PAI平台的快速开始(PAI-QuickStart)部署和微调千问大模型。
|
5月前
|
前端开发 Java API
阿里云百炼模型入门篇-大语言模型
本文主要介绍如何快速的通过阿里云百炼,带你如何快速入门通义千问系列大语言模型。