行为检测(一):openpose、LSTM、TSN、C3D等架构实现或者开源代码总结

简介: 这篇文章总结了包括openpose、LSTM、TSN和C3D在内的几种行为检测架构的实现方法和开源代码资源。

openpose

一:PyTorch-Pose is a PyTorch implementation of the general pipeline for 2D single human pose estimation. The aim is to provide the interface of the training/inference/evaluation, and the dataloader with various data augmentation options for the most popular human pose databases (e.g., the MPII human pose, LSP and FLIC).

LSTM

一:基于LSTM的行为识别

TSN

  • wo-stream 卷积网络对于长范围时间结构的建模无能为力,主要因为它仅仅操作一帧(空间网络)或者操作短片段中的单堆帧(时间网络),因此对时间上下文的访问是有限的。视频级框架TSN可以从整段视频中建模动作。和two-stream一样,TSN也是由空间流卷积网络和时间流卷积网络构成。但不同于two-stream采用单帧或者单堆帧,TSN使用从整个视频中稀疏地采样一系列短片段,每个片段都将给出其本身对于行为类别的初步预测,从这些片段的“共识”来得到视频级的预测结果。在学习过程中,通过迭代更新模型参数来优化视频级预测的损失值(loss value)。

  • 数据集:UCF101:链接:https://gas.graviti.cn/dataset/hello-dataset/UCF101/download

  • 代码链接:https://github.com/yjxiong/tsn-pytorch

C3D

  • 通过3D卷积操作核去提取视频数据的时间核空间特征。这些3D特征提取器在空间和时间两个维度上操作,因此可以捕捉视频流的运动信息。然后基于3D卷积提取器构造一个3D卷积神经网络,这个架构可以从连续视频帧中产生多通道的信息,然后在每一个通道都分离地进行卷积和下采样操作。最后将所有通道的信息组合起来得到最终的特征描述。C3D网络将完整的视频作为输入,不依赖于任何处理,可以轻松扩展到大数据集。可以应用于行为识别,场景识别,视频相似度分析等领域。具有通用、紧凑、简单、高效的特点。

  • 数据集:UCF101:链接:https://gas.graviti.cn/dataset/hello-dataset/UCF101/download

  • 代码链接:https://github.com/Niki173/C3D

  • 相关博客:https://blog.csdn.net/weixin_47349091/article/details/113484959

目录
相关文章
|
4月前
|
数据采集 机器学习/深度学习 大数据
行为检测代码(一):超详细介绍C3D架构训练+测试步骤
这篇文章详细介绍了C3D架构在行为检测领域的应用,包括训练和测试步骤,使用UCF101数据集进行演示。
128 1
行为检测代码(一):超详细介绍C3D架构训练+测试步骤
|
24天前
|
开发框架 前端开发 .NET
一个适用于 .NET 的开源整洁架构项目模板
一个适用于 .NET 的开源整洁架构项目模板
55 26
|
2月前
|
人工智能 自然语言处理
RWKV-7:RWKV系列开源最新的大模型架构,具有强大的上下文学习能力,超越传统的Attention范式
RWKV-7是RWKV系列的最新大模型架构版本,具有强大的上下文学习能力,超越了传统的attention和linear attention范式。本文详细介绍了RWKV-7的主要功能、技术原理及其在多语言处理、文本生成等领域的应用场景。
163 7
RWKV-7:RWKV系列开源最新的大模型架构,具有强大的上下文学习能力,超越传统的Attention范式
|
3月前
|
存储 SQL Apache
Apache Doris 开源最顶级基于MPP架构的高性能实时分析数据库
Apache Doris 是一个基于 MPP 架构的高性能实时分析数据库,以其极高的速度和易用性著称。它支持高并发点查询和复杂分析场景,适用于报表分析、即席查询、数据仓库和数据湖查询加速等。最新发布的 2.0.2 版本在性能、稳定性和多租户支持方面有显著提升。社区活跃,已广泛应用于电商、广告、用户行为分析等领域。
Apache Doris 开源最顶级基于MPP架构的高性能实时分析数据库
|
3月前
|
敏捷开发 缓存 中间件
.NET技术的高效开发模式,涵盖面向对象编程、良好架构设计及高效代码编写与管理三大关键要素
本文深入探讨了.NET技术的高效开发模式,涵盖面向对象编程、良好架构设计及高效代码编写与管理三大关键要素,并通过企业级应用和Web应用开发的实践案例,展示了如何在实际项目中应用这些模式,旨在为开发者提供有益的参考和指导。
51 3
|
4月前
|
机器学习/深度学习 网络架构 计算机视觉
目标检测笔记(一):不同模型的网络架构介绍和代码
这篇文章介绍了ShuffleNetV2网络架构及其代码实现,包括模型结构、代码细节和不同版本的模型。ShuffleNetV2是一个高效的卷积神经网络,适用于深度学习中的目标检测任务。
143 1
目标检测笔记(一):不同模型的网络架构介绍和代码
|
3月前
|
存储 安全 Java
系统安全架构的深度解析与实践:Java代码实现
【11月更文挑战第1天】系统安全架构是保护信息系统免受各种威胁和攻击的关键。作为系统架构师,设计一套完善的系统安全架构不仅需要对各种安全威胁有深入理解,还需要熟练掌握各种安全技术和工具。
228 10
|
3月前
|
编解码 人工智能 开发者
长短大小样样精通!原始分辨率、超长视频输入:更灵活的全开源多模态架构Oryx
【10月更文挑战第23天】Oryx 是一种新型多模态架构,能够灵活处理各种分辨率的图像和视频数据。其核心创新在于能够对图像和视频进行任意分辨率编码,并通过动态压缩器模块提高处理效率。Oryx 在处理长视觉上下文(如视频)时表现出色,同时在图像、视频和3D多模态理解方面也展现了强大能力。该模型的开源性质为多模态研究社区提供了宝贵资源,但同时也面临一些挑战,如选择合适的分辨率和压缩率以及计算资源的需求。
49 3
|
6月前
|
机器学习/深度学习 API 异构计算
7.1.3.2、使用飞桨实现基于LSTM的情感分析模型的网络定义
该文章详细介绍了如何使用飞桨框架实现基于LSTM的情感分析模型,包括网络定义、模型训练、评估和预测的完整流程,并提供了相应的代码实现。
|
4月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。

热门文章

最新文章