Flink-04 Flink Java 3分钟上手 FlinkKafkaConsumer消费Kafka数据 进行计算SingleOutputStreamOperatorDataStreamSource

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: Flink-04 Flink Java 3分钟上手 FlinkKafkaConsumer消费Kafka数据 进行计算SingleOutputStreamOperatorDataStreamSource

代码仓库

会同步代码到 GitHub

https://github.com/turbo-duck/flink-demo

pom.xml

修改pom.xml,需要加入 kafka相关的包,和适配器。

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>org.example</groupId>
    <artifactId>flink-demo-01</artifactId>
    <version>1.0-SNAPSHOT</version>

    <properties>
        <maven.compiler.source>8</maven.compiler.source>
        <maven.compiler.target>8</maven.compiler.target>
        <flink.version>1.13.2</flink.version>
        <scala.binary.version>2.12</scala.binary.version>
    </properties>

    <dependencies>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-java</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-java_${scala.binary.version}</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-clients_${scala.binary.version}</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-kafka_2.11</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.kafka</groupId>
            <artifactId>kafka-clients</artifactId>
            <version>3.0.0</version>
        </dependency>
    </dependencies>
</project>

编写代码

设置 Kafka 配置

Properties properties = new Properties();
properties.setProperty("bootstrap.servers", "0.0.0.0:9092");

创建Kafka消费者


FlinkKafkaConsumer<String> consumer = new FlinkKafkaConsumer<>("test", new SimpleStringSchema(), properties);

添加数据源


DataStreamSource<String> data = env.addSource(consumer);


FlatMap


SingleOutputStreamOperator<Tuple2<String, Long>> wordAndOne = data.flatMap(new FlatMapFunction<String, Tuple2<String, Long>>() {
    public void flatMap(String s, Collector<Tuple2<String, Long>> collector) throws Exception {
        for (String word : s.split(" ")) {
            collector.collect(Tuple2.of(word, 1L));
        }
    }
});


计算求和


SingleOutputStreamOperator<Tuple2<String, Long>> result = wordAndOne
    .keyBy(new KeySelector<Tuple2<String, Long>, Object>() {
        @Override
        public Object getKey(Tuple2<String, Long> value) throws Exception {
            return value.f0;
        }
    })
    .sum(1);


全部代码

package icu.wzk.demo04;

import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.flink.util.Collector;

import java.util.Properties;

public class StartApp {

    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        Properties properties = new Properties();
        properties.setProperty("bootstrap.servers","0.0.0.0:9092");
        FlinkKafkaConsumer<String> consumer = new FlinkKafkaConsumer<>("test", new SimpleStringSchema(), properties);
        DataStreamSource<String> data = env.addSource(consumer);
        SingleOutputStreamOperator<Tuple2<String, Long>> wordAndOne = data.flatMap(new FlatMapFunction<String, Tuple2<String, Long>>() {
            public void flatMap(String s, Collector<Tuple2<String, Long>> collector) throws Exception {
                for (String word : s.split(" ")) {
                    collector.collect(Tuple2.of(word, 1L));
                }
            }
        });
        SingleOutputStreamOperator<Tuple2<String, Long>> result = wordAndOne
                .keyBy(new KeySelector<Tuple2<String, Long>, Object>() {
                    @Override
                    public Object getKey(Tuple2<String, Long> value) throws Exception {
                        return value.f0;
                    }
                })
                .sum(1);
        result.print();
        env.execute();
    }

}

KafkaProducer

package icu.wzk.demo04;

import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.ProducerRecord;

import java.util.Properties;

public class TestKafkaProducer {

    public static void main(String[] args) throws InterruptedException {
        Properties props = new Properties();
        props.put("bootstrap.servers", "0.0.0.0:9092");
        props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        Producer<String, String> producer = new KafkaProducer<>(props);
        for (int i = 0; i < 500; i++) {
            String key = "key-" + i;
            String value = "value-" + i;
            ProducerRecord<String, String> record = new ProducerRecord<>("test", key, value);
            producer.send(record);
            System.out.println("send: " + key);
            Thread.sleep(200);
        }
        producer.close();
    }

}

目录
相关文章
|
3月前
|
Java 流计算
利用java8 的 CompletableFuture 优化 Flink 程序
本文探讨了Flink使用avatorscript脚本语言时遇到的性能瓶颈,并通过CompletableFuture优化代码,显著提升了Flink的QPS。文中详细介绍了avatorscript的使用方法,包括自定义函数、从Map中取值、使用Java工具类及AviatorScript函数等,帮助读者更好地理解和应用avatorscript。
利用java8 的 CompletableFuture 优化 Flink 程序
|
19天前
|
存储 Java
java中的常见运算符的计算方式
本文介绍了计算机中二进制数的原码、反码和补码的概念及其转换方式。原码是符号位加真值的绝对值;反码中正数不变,负数其余位取反;补码在反码基础上加1。文章还详细解释了Java中的常见运算符(如按位与、或、异或、移位等)如何基于二进制进行计算,并探讨了使用补码的原因,包括统一符号位处理和扩展表示范围。通过具体代码示例帮助理解这些概念。
java中的常见运算符的计算方式
|
19天前
|
存储 JavaScript Java
如何在Java中计算绝对值
绝对值表示一个数离0的距离,总是非负的。在Java中,可以通过`Math.abs()`函数或`if-else`条件语句来计算绝对值。使用`Math.abs()`可直接将负数转为正数,而`if-else`则根据条件判断是否取反。本文介绍了这两种方法的具体实现步骤和代码示例,并展示了如何通过用户输入获取数值并输出其绝对值。此外,还提供了完整的代码和编译执行的方法。
如何在Java中计算绝对值
|
2月前
|
存储 监控 数据处理
flink 向doris 数据库写入数据时出现背压如何排查?
本文介绍了如何确定和解决Flink任务向Doris数据库写入数据时遇到的背压问题。首先通过Flink Web UI和性能指标监控识别背压,然后从Doris数据库性能、网络连接稳定性、Flink任务数据处理逻辑及资源配置等方面排查原因,并通过分析相关日志进一步定位问题。
221 61
|
2月前
|
消息中间件 Kafka 流计算
FlinkKafkaConsumer相同group.id多个任务消费kafka问题
当使用FlinkKafkaConsumer消费Kafka时,即使设置了相同的group.id,由于Flink内部管理partition的消费offset,两个程序仍能同时消费所有数据。这与KafkaConsumer不同,后者严格遵循消费组隔离原则,避免重复消费同一分区的数据。Flink为实现exactly-once语义,需要独立管理offset,这导致了上述现象。
|
2月前
|
存储 分布式计算 Java
存算分离与计算向数据移动:深度解析与Java实现
【11月更文挑战第10天】随着大数据时代的到来,数据量的激增给传统的数据处理架构带来了巨大的挑战。传统的“存算一体”架构,即计算资源与存储资源紧密耦合,在处理海量数据时逐渐显露出其局限性。为了应对这些挑战,存算分离(Disaggregated Storage and Compute Architecture)和计算向数据移动(Compute Moves to Data)两种架构应运而生,成为大数据处理领域的热门技术。
87 2
|
2月前
|
消息中间件 缓存 Java
java nio,netty,kafka 中经常提到“零拷贝”到底是什么?
零拷贝技术 Zero-Copy 是指计算机执行操作时,可以直接从源(如文件或网络套接字)将数据传输到目标缓冲区, 而不需要 CPU 先将数据从某处内存复制到另一个特定区域,从而减少上下文切换以及 CPU 的拷贝时间。
java nio,netty,kafka 中经常提到“零拷贝”到底是什么?
|
2月前
|
消息中间件 资源调度 Java
用Java实现samza转换成flink
【10月更文挑战第20天】
|
2月前
|
分布式计算 Java MaxCompute
ODPS MR节点跑graph连通分量计算代码报错java heap space如何解决
任务启动命令:jar -resources odps-graph-connect-family-2.0-SNAPSHOT.jar -classpath ./odps-graph-connect-family-2.0-SNAPSHOT.jar ConnectFamily 若是设置参数该如何设置
|
3月前
|
运维 数据处理 Apache
数据实时计算产品对比测评报告:阿里云实时计算Flink版
数据实时计算产品对比测评报告:阿里云实时计算Flink版

热门文章

最新文章