带你重温一下 Python 的对象模型

简介: 带你重温一下 Python 的对象模型

在面向对象的理论中,有两个核心的概念:类和实例。类可以看成是一个模板,实例就是根据这个模板创建出来的对象。但在 Python 里面,类和实例都是对象,也就是所谓的类对象(或者类型对象)和实例对象。

为了避免后续出现歧义,我们这里把对象分为三种:

  • 内置类对象:比如 int、str、list、type、object 等等;
  • 自定义类对象:通过 class 关键字定义的类,当然我们也会把它和上面的内置类对象统称为类对象(或者类型对象);
  • 实例对象:由类对象(内置类对象或自定义类对象)创建的实例;

而对象之间存在以下两种关系:

  • is-kind-of:对应面向对象理论中子类和父类之间的关系;
  • is-instance-of:对应面向对象理论中实例对象和类对象之间的关系;

我们举例说明:

class Girl(object):
    def say(self):
        return "古明地觉"
girl = Girl()
print(girl.say())  # 古明地觉

这段代码便包含了上面的三种对象:object(内置类对象),Girl(自定义类对象),girl(实例对象)。

显然 Girl 和 object 之间是 is-kind-of 关系,即 Girl 是 object 的子类。值得一提的是,Python3 里面所有的类(除 object)都是默认继承自 object,即便我们这里不显式继承 object,也会默认继承的,但为了说明,我们就写上了。

除了 Girl 是 object 的子类,我们还能看出 girl 和 Girl 之间存在 is-instance-of 关系,即 girl 是 Girl 的实例。当然如果再进一步的话,girl 和 object 之间也存在 is-instance-of 关系,girl 也是 object 的实例。

class Girl(object):
    pass
    
girl = Girl()
print(issubclass(Girl, object))  # True 
print(type(girl))  # <class '__main__.Girl'>
print(isinstance(girl, Girl))  # True
print(isinstance(girl, object))  # True

girl 是 Girl 这个类实例化得到的,所以 type(girl) 得到的是类对象 Girl。但 girl 也是 object 的实例对象,因为 Girl 继承了 object。至于这其中的原理,我们会慢慢介绍。


Python 也提供了一些手段可以探测这些关系,除了上面的 type 之外,还可以使用对象的 __class__ 属性探测一个对象和其它的哪些对象之间存在 is-instance-of 关系。


而通过对象的 __bases__ 属性则可以探测一个对象和其它的哪些对象之间存在着 is-kind-of 关系。此外 Python 还提供了两个函数 issubclass 和 isinstance 来验证两个对象之间是否存在着我们期望的关系。

class Girl(object):
    pass 
girl = Girl()
print(girl.__class__)  # <class '__main__.Girl'>
print(Girl.__class__)  # <class 'type'>
# __class__是查看自己的类型是什么,也就是生成自己的类
# 而在介绍 Python 对象的时候,我们就看到了
# 任何一个对象都至少具备两个东西: 一个是引用计数、一个是类型
# 所以 __class__ 是所有对象都具备的
# __base__只显示直接继承的第一个类
print(Girl.__base__)  # <class 'object'>
# __bases__ 会显示直接继承的所有类,以元组的形式
print(Girl.__bases__)  # (<class 'object'>,)

我们画一张图总结一下:


a606b8ab5d4419b263d2d66f2b30c1dc.png


另外需要注意里面的 type 和 object:


  • type 和 object 存在 is-kind-of 关系,因为 type 是 object 的子类;
  • object 和 type 存在 is-instance-of 关系,因为 object 是 type 的实例对象;


可能有人会好奇为什么会是这样,而关于这一点,我在 type 与 object 的恩怨纠葛这篇文章讲得很详细了,感兴趣可以点击阅读一下。

简单来说就是,type 在底层对应的结构体为 PyType_Type、object 在底层对应的结构体为 PyBaseObject_Type。而在创建 object 的时候,将内部的 ob_type 设置成了&PyType_Type;在创建type的时候,将内部的 tp_base 设置成了&PyBaseObject_Type。

因此这两者的定义是彼此依赖的,两者是同时出现的,我们后面还会看到。

另外 type 的类型就是 type 本身,所以:

  • 实例对象的类型是类型对象,类型对象的类型是元类;
  • 所有类型对象的基类都收敛于 object
  • 所有对象的类型都收敛于 type;

5610776f3fd371f9668a0e6b948e74df.png

因此 Python 算是将一切皆对象的理念贯彻到了极致,也正因为如此,Python 才具有如此优秀的动态特性。

但还没有结束,我们看一下类对象 Girl 的行为,首先它支持属性设置:

class Girl(object):
    pass
print(hasattr(Girl, "name"))  # False
Girl.name = "古明地觉"
print(hasattr(Girl, "name"))  # True
print(Girl.name)  # 古明地觉

一个类都已经定义完了,我们后续还可以进行属性添加,这在其它的静态语言中是不可能做到的。那么Python是如何做到的呢?我们说能够对属性进行动态添加,你会想到什么?是不是字典呢?

正如 global 名字空间一样,我们猜测类应该也有自己的属性字典,往类里面设置属性的时候,等价于向字典中添加键值对,同理其它操作也与之类似。

class Girl(object):
    pass
print(Girl.__dict__.get("name", "不存在"))  # 不存在
Girl.name = "古明地觉"
print(Girl.__dict__.get("name"))  # 古明地觉

和操作全局变量是类似的,但是有一点需要注意:我们不能直接通过类的属性字典来设置属性。

try:
    Girl.__dict__["name"] = "古明地觉"
except Exception as e:
    print(e)  
# 'mappingproxy' object does not support item assignment

虽然叫属性字典,但其实是 mappingproxy 对象,该对象本质上就是对字典进行了一层封装,在字典的基础上移除了增删改操作,也就是只保留了查询功能。如果我们想给类增加属性,可以采用直接赋值的方式,或者调用 setattr 函数也是可以的。

但在介绍如何篡改虚拟机的时候,我们提到过一个骚操作,可以通过 gc 模块拿到 mappingproxy 对象里的字典。

import gc
class Girl(object):
    pass
gc.get_referents(Girl.__dict__)[0]["name"] = "古明地觉"
print(Girl.name)  # 古明地觉

并且这种做法除了适用于自定义类对象,还适用于内置类对象。但是工作中不要这么做,知道有这么个操作就行。

除了设置属性之外,我们还可以设置函数。

class Girl(object):
    pass
Girl.info = lambda name: f"我是{name}"
print(Girl.info("古明地觉"))  # 我是古明地觉
# 如果实例调用的话,会和我们想象的不太一样
# 因为实例调用的话会将函数包装成方法
try:
    Girl().info("古明地觉")
except TypeError as e:
    print(e) 
"""
<lambda>() takes 1 positional argument but 2 were given
"""    
# 实例在调用的时候会将自身也作为参数传进去
# 所以第一个参数 name 实际上接收的是 Girl 的实例对象
# 只不过第一个参数按照规范来讲应该叫做self
# 但即便你起别的名字也是无所谓的
print(Girl().info())  
"""
我是<__main__.Girl object at 0x000001920BB88760>
"""

所以我们可以有两种做法:

# 将其包装成一个静态方法
# 这样类和实例都可以调用
Girl.info = staticmethod(lambda name: f"我是{name}")
print(Girl.info("古明地觉"))  # 我是古明地觉
print(Girl().info("古明地觉"))  # 我是古明地觉
# 如果是给实例用的,那么带上一个 self 参数即可
Girl.info = lambda self, name: f"我是{name}"
print(Girl().info("古明地觉"))  # 我是古明地觉

此外我们还可以通过 type 来动态地往类里面进行属性的增加、修改和删除。

class Girl(object):
    def say(self):
        pass
print(hasattr(Girl, "say"))  # True
# delattr(Girl, "say") 与之等价
type.__delattr__(Girl, "say")
print(hasattr(Girl, "say"))  # False
# 我们设置一个属性吧
# 等价于 Girl.name = "古明地觉"
setattr(Girl, "name", "古明地觉")
print(Girl.name)  # 古明地觉

事实上调用 getattr、setattr、delattr 等价于调用其类型对象的__getattr__、__setattr__、__delattr__。

所以,一个对象支持哪些行为,取决于其类型对象定义了哪些操作。并且通过对象的类型对象,可以动态地给该对象进行属性的设置。Python 所有类型对象的类型对象都是 type,通过 type 我们便可以控制类的生成过程,即便类已经创建完毕了,也依旧可以进行属性设置。


但是注意:type 可以操作的类只能是通过 class 定义的动态类,而像 int、list、dict 等静态类,它们是在源码中静态定义好的,只不过类型设置成了 type。一言以蔽之,type 虽然是所有类对象的类对象,但 type 只能对动态类进行属性上的修改,不能修改静态类。

try:
    int.name = "古明地觉"
except Exception as e:
    print(e)
"""
can't set attributes of built-in/extension type 'int'
"""
try:
    setattr(int, "ping", "pong")
except Exception as e:
    print(e)
"""
can't set attributes of built-in/extension type 'int'     
"""

通过报错信息可以看到,不可以设置内置类和扩展类的属性,因为内置类在解释器启动之后,就已经初始化好了。至于扩展类就是我们使用 Python/C API 编写的扩展模块中的类,它和内置类是等价的。


因此内置类和使用 class 定义的类本质上是一样的,都是 PyTypeObject 对象,它们的类型在 Python 里面都是 type。但区别在于内置类在底层是静态初始化的,我们不能进行属性的动态设置(通过 gc 模块实现除外)。


但是为什么不可以对内置类和扩展类进行属性设置呢?首先我们要知道 Python 的动态特性是虚拟机赐予的,而虚拟机的工作就是将 PyCodeObject 对象翻译成 C 的代码进行执行,所以 Python 的动态特性就是在这一步发生的。

而内置类在解释器启动之后就已经静态初始化好了,直接指向 C 一级的数据结构,同理扩展类也是如此。它们相当于绕过了解释执行这一步,所以它们的属性不可以动态添加。

不光内置的类本身,还有它的实例对象也是如此。

a = 123
print(hasattr(a, "__dict__"))  # False

我们看到它连自己的属性字典都没有,因为内置类对象的实例对象,内部有哪些属性,解释器记得清清楚楚。它们在底层都已经写死了,并且不允许修改,因此虚拟机完全没有必要为其实现属性字典(节省了内存占用)。

相关文章
|
Python
重温Python初识函数的基本使用方法
重温Python初识函数的基本使用方法
144 0
|
11天前
|
设计模式 开发者 Python
Python编程中的设计模式:工厂方法模式###
本文深入浅出地探讨了Python编程中的一种重要设计模式——工厂方法模式。通过具体案例和代码示例,我们将了解工厂方法模式的定义、应用场景、实现步骤以及其优势与潜在缺点。无论你是Python新手还是有经验的开发者,都能从本文中获得关于如何在实际项目中有效应用工厂方法模式的启发。 ###
|
2天前
|
Python
不容错过!Python中图的精妙表示与高效遍历策略,提升你的编程艺术感
本文介绍了Python中图的表示方法及遍历策略。图可通过邻接表或邻接矩阵表示,前者节省空间适合稀疏图,后者便于检查连接但占用更多空间。文章详细展示了邻接表和邻接矩阵的实现,并讲解了深度优先搜索(DFS)和广度优先搜索(BFS)的遍历方法,帮助读者掌握图的基本操作和应用技巧。
13 4
|
1天前
|
设计模式 程序员 数据处理
编程之旅:探索Python中的装饰器
【10月更文挑战第34天】在编程的海洋中,Python这艘航船以其简洁优雅著称。其中,装饰器作为一项高级特性,如同船上的风帆,让代码更加灵活和强大。本文将带你领略装饰器的奥秘,从基础概念到实际应用,一起感受编程之美。
|
4天前
|
存储 人工智能 数据挖掘
从零起步,揭秘Python编程如何带你从新手村迈向高手殿堂
【10月更文挑战第32天】Python,诞生于1991年的高级编程语言,以其简洁明了的语法成为众多程序员的入门首选。从基础的变量类型、控制流到列表、字典等数据结构,再到函数定义与调用及面向对象编程,Python提供了丰富的功能和强大的库支持,适用于Web开发、数据分析、人工智能等多个领域。学习Python不仅是掌握一门语言,更是加入一个充满活力的技术社区,开启探索未知世界的旅程。
13 5
|
2天前
|
机器学习/深度学习 JSON API
Python编程实战:构建一个简单的天气预报应用
Python编程实战:构建一个简单的天气预报应用
10 1
|
2天前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
15 2
|
4天前
|
人工智能 数据挖掘 开发者
探索Python编程:从基础到进阶
【10月更文挑战第32天】本文旨在通过浅显易懂的语言,带领读者从零开始学习Python编程。我们将一起探索Python的基础语法,了解如何编写简单的程序,并逐步深入到更复杂的编程概念。文章将通过实际的代码示例,帮助读者加深理解,并在结尾处提供练习题以巩固所学知识。无论你是编程新手还是希望提升编程技能的开发者,这篇文章都将为你的学习之旅提供宝贵的指导和启发。
|
9天前
|
数据处理 Python
从零到英雄:Python编程的奇幻旅程###
想象你正站在数字世界的门槛上,手中握着一把名为“Python”的魔法钥匙。别小看这把钥匙,它能开启无限可能的大门,引领你穿梭于现实与虚拟之间,创造属于自己的奇迹。本文将带你踏上一场从零基础到编程英雄的奇妙之旅,通过生动有趣的比喻和实际案例,让你领略Python编程的魅力,激发内心深处对技术的渴望与热爱。 ###
|
12天前
|
数据采集 机器学习/深度学习 人工智能
Python编程入门:从基础到实战
【10月更文挑战第24天】本文将带你进入Python的世界,从最基础的语法开始,逐步深入到实际的项目应用。我们将一起探索Python的强大功能和灵活性,无论你是编程新手还是有经验的开发者,都能在这篇文章中找到有价值的内容。让我们一起开启Python的奇妙之旅吧!
下一篇
无影云桌面