鬼手操控着你的手机?大模型GUI智能体易遭受环境劫持

简介: 【9月更文挑战第27天】近年来,随着人工智能技术的发展,多模态大语言模型(MLLM)在图形用户界面(GUI)中广泛应用,提升了交互体验。然而,最新研究《环境警示:多模态智能体易受环境干扰》指出,这些智能体可能因环境干扰而行为失准。作者通过实验展示了即使是强大模型也会受无关因素影响,导致不可靠或不可预测的行为。研究还证实,通过环境注入攻击可进一步加剧此问题。尽管如此,多模态GUI智能体依然潜力巨大,未来需改进感知能力和算法以增强鲁棒性,解决环境干扰问题。论文详细内容见:https://arxiv.org/abs/2408.02544。

近年来,随着人工智能技术的飞速发展,多模态大语言模型(MLLM)在图形用户界面(GUI)环境中的应用越来越广泛。这些智能体能够通过多种感官与用户进行交互,提供更丰富、更准确的信息和服务。然而,最近一篇名为《环境警示:多模态智能体易受环境干扰》的论文却揭示了一个令人担忧的问题:这些多模态GUI智能体可能容易受到环境的干扰,从而导致其行为出现偏差。

该论文的作者通过实验研究了多模态大语言模型在GUI环境中的可靠性。他们提出了一个通用的场景设置,其中用户和智能体都是良性的,但环境虽然无害,却包含了与任务无关的内容。为了评估不同多模态大语言模型的性能,作者使用了他们自己构建的模拟数据集,并根据智能体感知能力的三个不同级别,遵循三种不同的工作模式。

实验结果显示,即使是最强大的模型,无论是通用智能体还是专门的GUI智能体,都容易受到环境的干扰。这意味着,当这些智能体在执行任务时,如果环境中存在与任务无关的干扰因素,它们可能会被这些因素所吸引,从而导致其行为出现偏差。

这一发现对于多模态GUI智能体的应用具有重要意义。虽然之前的研究表明,这些智能体在执行任务时能够提供准确的帮助,但该论文的结果表明,它们也可能受到环境的干扰,从而导致其行为出现不可靠或不可预测的情况。

为了进一步验证这一观点,作者还从对抗性的角度出发,实施了环境注入攻击。他们发现,通过在环境中引入特定的干扰因素,可以利用多模态GUI智能体的不可靠性,从而导致其出现意外的风险。

然而,尽管存在这些潜在的问题,多模态GUI智能体仍然具有巨大的潜力和价值。它们能够提供更丰富、更准确的信息和服务,帮助用户更好地完成各种任务。因此,我们应该继续研究和开发这些智能体,并采取措施来解决其易受环境干扰的问题。

一种可能的解决方案是改进多模态GUI智能体的感知能力,使其能够更好地区分与任务相关的信息和与任务无关的干扰因素。另一种解决方案是设计更健壮的算法和模型,使其能够更好地抵御环境干扰的影响。

论文地址:https://arxiv.org/abs/2408.02544

目录
相关文章
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
清华EconAgent获ACL 2024杰出论文:大模型智能体革新计算经济学研究范式
近年来,人工智能的迅猛发展推动了数据驱动建模在宏观经济学领域的应用。清华大学研究团队提出的EconAgent模型,基于大型语言模型,具备类似人类的决策能力,能更准确地模拟个体行为对宏观经济系统的影响。EconAgent在个体异质性、市场动态及宏观经济因素模拟方面表现出色,并具有更好的可解释性和灵活性。然而,其高计算复杂度和部分决策过程的不透明性仍需进一步解决。该成果已在ACL 2024会议上获得杰出论文奖。论文链接:https://arxiv.org/abs/2310.10436v4
78 3
|
21天前
|
人工智能 自然语言处理 算法
企业内训|AI/大模型/智能体的测评/评估技术-某电信运营商互联网研发中心
本课程是TsingtaoAI专为某电信运营商的互联网研发中心的AI算法工程师设计,已于近日在广州对客户团队完成交付。课程聚焦AI算法工程师在AI、大模型和智能体的测评/评估技术中的关键能力建设,深入探讨如何基于当前先进的AI、大模型与智能体技术,构建符合实际场景需求的科学测评体系。课程内容涵盖大模型及智能体的基础理论、测评集构建、评分标准、自动化与人工测评方法,以及特定垂直场景下的测评实战等方面。
76 4
|
2月前
LangChain-26 Custom Agent 自定义一个Agent并通过@tool绑定对应的工具 同时让大模型自己调用编写的@tools函数
LangChain-26 Custom Agent 自定义一个Agent并通过@tool绑定对应的工具 同时让大模型自己调用编写的@tools函数
76 3
LangChain-26 Custom Agent 自定义一个Agent并通过@tool绑定对应的工具 同时让大模型自己调用编写的@tools函数
|
3月前
|
人工智能 自然语言处理 搜索推荐
如何让智能客服像真人一样对话?容联七陌揭秘:多Agent大模型
科技云报到原创。 经历了多年的“答非所问”、“一问三不知”,很多人已经厌倦了所谓的“智能客服”。哪怕是技术已经非常成熟、可以模拟真人发音的外呼机器人,也会因为“机感”重而被用户迅速挂机或转向人工客服。 智能客服似乎遇到了一道坎,在理解用户、和用户对话方面,始终无法实现真正的“智能”。然而大模型技术的出现,让智能客服看到了前所未有的曙光——基于大模型特有的生成式技术和智能的涌现,让智能客服越来越逼近人们想象中的样子。 但问题是,仅有大模型就够了吗?大模型技术要如何引入智能客服才能落地?落地后的大模型究竟如何在智能客服具体场景中发挥作用?又能为客服行业带来了哪些改变?更进一步,对于企业和
234 1
如何让智能客服像真人一样对话?容联七陌揭秘:多Agent大模型
|
2月前
|
传感器 机器学习/深度学习 弹性计算
Agent与大模型的区别
本文详细对比了人工智能领域的两个重要概念——Agent和大模型。大模型如GPT-3、BERT等,擅长自然语言处理任务,如文本生成、翻译等;Agent则是自主的软件实体,能够在特定环境中感知、决策并执行任务,如管理日程、控制智能家居等。文章介绍了它们的定义、功能、技术架构及应用场景,并总结了两者的核心差异和未来发展方向。
|
2月前
|
存储 自然语言处理 搜索推荐
大模型 Agent 概述
大模型Agent是基于大型预训练模型构建的智能体,具有强大的语言理解和生成能力,能完成多任务处理。其记忆功能包括短期记忆和长期记忆,支持上下文保持、知识积累、计划决策及内容创作,广泛应用于自然语言处理、问答系统、信息检索、辅助决策、教育、创意应用和客服等领域。
|
3月前
|
自然语言处理 决策智能 Python
同时操控手机和电脑,100项任务,跨系统智能体评测基准有了
【9月更文挑战第9天】近年来,随着人工智能技术的进步,自主智能体的应用日益广泛。为解决现有评测基准的局限性,研究人员推出了CRAB(Cross-environment Agent Benchmark),这是一种支持跨环境任务的新框架,结合了基于图的精细评估方法和高效的任务构建机制。CRAB框架支持多种设备并可轻松扩展至任何具备Python接口的环境。首个跨平台基准CRAB-v0包含100项任务,实验显示GPT-4单智能体在完成率方面表现最佳。CRAB框架为智能体研究提供了新机遇,但也面临计算资源和评估准确性等方面的挑战。
73 9
|
3月前
|
人工智能 JSON 自然语言处理
你的Agent稳定吗?——基于大模型的AI工程实践思考
本文总结了作者在盒马智能客服的落地场景下的一些思考,从工程的角度阐述对Agent应用重要的稳定性因素和一些解法。
152 12
|
3月前
|
弹性计算 自然语言处理 API
如何速成RAG+Agent框架大模型应用搭建
本文侧重于能力总结和实操搭建部分,从大模型应用的多个原子能力实现出发,到最终串联搭建一个RAG+Agent架构的大模型应用。
|
4月前
|
人工智能 安全 开发者
OpenDevin出技术报告了,大模型Agent开发者必读
【8月更文挑战第25天】近期发布的OpenDevin技术报告备受瞩目,此报告由来自伊利诺伊大学香槟分校、卡内基梅隆大学等顶尖学府的研究员联合撰写。OpenDevin作为一个社区驱动的开放平台,旨在为AI软件开发者提供一个模拟通用代理的强大工具。平台采用事件流架构促进用户界面、代理与环境间的交互,并构建了包含沙盒操作系统和网络浏览器的任务执行环境。此外,它支持多代理协同作业及一系列评估标准,目前已涵盖15个评估基准。作为拥有160多位贡献者的社区项目,OpenDevin展现了极高的灵活性和安全性,同时也面临着技术门槛和进一步研发等挑战。
87 2