基于视觉工具箱和背景差法的行人检测,行走轨迹跟踪,人员行走习惯统计matlab仿真

简介: 该算法基于Matlab 2022a,利用视觉工具箱和背景差法实现行人检测与轨迹跟踪,通过构建背景模型(如GMM),对比当前帧与模型差异,识别运动物体并统计行走习惯,包括轨迹、速度及停留时间等特征。演示三维图中幅度越大代表更常走的路线。完整代码含中文注释及操作视频。

1.算法运行效果图预览
(完整程序运行后无水印)

1.jpeg
2.jpeg
3.jpeg
4.jpeg

在三维图中,幅度越大,则表示人员更习惯的行走路线。

2.算法运行软件版本
matlab2022a

3.部分核心程序
(完整版代码包含详细中文注释和操作步骤视频)
``` for j=1:length(inds)
% 调整边界框格式
[R,C] = find(lb == inds(j));
upLPoint = min([R C]);
dWindow = max([R C]) - upLPoint + 1;
box = [fliplr(upLPoint) fliplr(dWindow)];
% 绘制边界框
rectangle('Position', box, 'EdgeColor', [1 1 1], 'linewidth', 2);

    % 如果不是第一帧,计算区域的标签(轨迹关联)
    if i ~= 0  
        overlap    = 0; 
        smax       = 0;  
        imax       = 0; 
        % 查找与上一帧区域的最大交集
        for r=1:length(Box1_save)
            if rectint(box, Box1_save{r}) > smax 
                overlap    = 1;
                smax     = rectint(box, Box1_save{r}); 
                imax = Idx1_save(r);
            end
        end

        % 若无交集,则分配新标签
        if overlap == 0 
            if j ~= 1
                imax = max(max(Idx1_save), max(Idx2_save)) + 1; 
            else 
                imax = max(Idx1_save) + 1;
            end

        end
        % 更新当前帧的边界框和索引列表
        Box2_save{end+1} = box;  
        Idx2_save(end+1) = imax; 
    else  
        Box2_save{end+1} = box; 
        Idx2_save(end+1) = j;  
    end
    % 更新last_fr中动态轨迹的质心信息
    info_save{rem(i,Lsmth)+1}(end+1) = I_reg(inds(j)).Centroid(1);  
    info_save{rem(i,Lsmth)+1}(end+1) = I_reg(inds(j)).Centroid(2);
end

161

```

4.算法理论概述
基于视觉工具箱和背景差法的行人检测、行走轨迹跟踪以及人员行走习惯统计是视频监控和智能分析领域的重要应用。

  背景差法是一种经典的运动目标检测技术,其核心思想是通过比较当前帧与背景模型的差异来识别运动物体。具体步骤如下:

  首先,需要构建背景模型。这通常通过帧平均、高斯混合模型(Gaussian Mixture Model, GMM)等方法实现。以GMM为例,假设场景中的每个像素值xi服从一个混合高斯分布,可表示为:

image.png

   其中,πk是第k个高斯成分的混合权重,μk和Σk分别是该成分的均值和协方差矩阵,K是高斯分量的数量。

   对于新到来的一帧图像,每个像素的像素值xnew,i与背景模型比较,计算其属于背景的概率。若概率低于某一阈值θ,则认为该像素属于前景,表示可能是移动的人或物。具体计算为:

image.png

   行走习惯统计涉及对个体或群体的行走路径、速度、停留时间等行为特征进行分析。这通常需要先通过上述步骤获取每个人的轨迹,然后进行模式识别和数据分析。对于每条行人轨迹,可以提取诸如行程时间、平均速度、轨迹长度、驻留点(停留时间超过阈值的区域)等特征。例如,平均速度Vavg可由总距离除以总时间计算得出:

image.png

相关文章
|
1天前
|
算法 数据安全/隐私保护 索引
索引OFDM调制解调系统的matlab性能仿真
本文对m索引OFDM调制解调系统性能进行了仿真分析,增加了仿真图并配有语音讲解视频,使用Matlab2022a完成仿真,代码无水印。研究了OFDM-IM技术,通过激活不同子载波组合传输额外信息,提高频谱效率和降低PAPR。提出了OFDM联合子块索引调制技术(OFDM-JS-IM)和OFDM全索引方法(OFDM-AIM),并通过遗传算法优化子块查找表,有效提升系统性能。提供了核心MATLAB程序示例。
21 3
|
1天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-GRU网络的数据分类识别算法matlab仿真
本项目展示了使用MATLAB2022a实现的贝叶斯优化、CNN和GRU算法优化效果。优化前后对比显著,完整代码附带中文注释及操作视频。贝叶斯优化适用于黑盒函数,CNN用于时间序列特征提取,GRU改进了RNN的长序列处理能力。
|
20天前
|
算法
基于HASM模型的高精度建模matlab仿真
本课题使用HASM进行高精度建模,介绍HASM模型及其简化实现方法。HASM模型基于层次化与自适应统计思想,通过多层结构捕捉不同尺度特征,自适应调整参数,适用于大规模、高维度数据的分析与预测。MATLAB2022A版本运行测试,展示运行结果。
|
1天前
|
算法
基于大爆炸优化算法的PID控制器参数寻优matlab仿真
本研究基于大爆炸优化算法对PID控制器参数进行寻优,并通过Matlab仿真对比优化前后PID控制效果。使用MATLAB2022a实现核心程序,展示了算法迭代过程及最优PID参数的求解。大爆炸优化算法通过模拟宇宙大爆炸和大收缩过程,在搜索空间中迭代寻找全局最优解,特别适用于PID参数优化,提升控制系统性能。
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
205 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
131 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
95 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
7月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
7月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)

热门文章

最新文章