如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码

简介: 该博客展示了如何通过Python预处理神经网络权重矩阵并将其导出为表格,然后使用Chiplot网站来可视化神经网络的神经元节点之间的连接。

如何可视化神经网络的神经元节点之间的连接?

1 导出表格

将网络的权重矩阵导出为三个表格

(1)nodes.csv

一列表示,为每个节点的编码

node
node1
node2
node3
node4
node5
node6
node7
node8
node9

(2)links.csv

这个表格表示节点的连接,第一列为顺序编码,唯一表示,第二列是节点的起点,第二个为节点的终点

id source target
1 node1 node2
2 node1 node3
3 node1 node4
4 node1 node7
5 node1 node8
6 node1 node10
7 node1 node13
8 node1 node14
9 node1 node16
10 node1 node19
11 node1 node20
12 node1 node26
13 node1 node29
14 node1 node38

(3)node_class.csv

这个表格表示每个节点的类别,方便后续对不同的节点绘制不同的颜色

id class
node1 hub node
node2 hub node
node3 hub node
node4 non-hub node
node5 hub node
node6 hub node
node7 hub node
node8 non-hub node
import pandas as pd

# 将小数值的权重矩阵转为0-1表示的矩阵
def convert_to_binary(matrix):
    binary_matrix = []
    for row in matrix:
        binary_row = [1 if value != 0 else 0 for value in row]
        binary_matrix.append(binary_row)
    return np.array(binary_matrix)

def generate_data(W):

    adj_binary_matrix = convert_to_binary(W)
    # 初始化邻接矩阵
    adj_matrix = adj_binary_matrix

    # 获取节点数量
    num_nodes = adj_matrix.shape[0]

    # 生成节点编码
    node_codes = ['node' + str(i+1) for i in range(num_nodes)]

    # 创建 nodes.csv 文件
    nodes_df = pd.DataFrame(node_codes, columns=['node'])


    # 创建 links.csv 文件
    links = []
    id = 1
    for i in range(num_nodes):
        for j in range(num_nodes):
            if adj_matrix[i][j] == 1:
                links.append((id, node_codes[i], node_codes[j]))
                id+=1

    links_df = pd.DataFrame(links, columns=['id', 'source', 'target'])
    links_df.to_csv(f'links.csv', index=False)
    nodes_df.to_csv(f'nodes.csv', index=False)
    # 对网络不同度的节点分类,分为高度节点((hub))和非高度节点(non-hub)

    # 计算每个节点的度
    degrees = np.sum(adj_matrix != 0, axis=1)

    # 定义度的连接比例为threshold的为hub节点
    threshold  = 0.7
    threshold_degree = np.quantile(degrees,threshold)
    # 根据节点的度将它们分为两类
    node_classes = ['hub node' if degree >= threshold_degree else 'non-hub node' for degree in degrees]

    # 将结果保存到名为node_class.csv的表格中
    result = pd.DataFrame({'id': node_codes, 'class': node_classes})
    result.to_csv('node_class.csv', index=False)
# 假设神经网络每个神经元之间的邻接矩阵
# 初始化一个10*10的邻接矩阵,初始值全为0
adj_matrix = [
    [-0.000000,0.000000,0.000000,0.000000,0.000000,-0.000000,0.122116,-0.029914,0.364874,0.000000],
[0.000000,-0.000000,-0.003972,-0.035493,-0.412647,-0.000000,-0.000000,-0.000000,-0.000000,-0.000000],
[-0.000000,-0.086977,-0.000000,0.190105,0.000000,-0.153798,-0.000000,0.189070,0.000000,-0.000000],
[-0.000000,0.368288,-0.000000,-0.000000,-0.000000,0.057519,0.000000,-0.000000,0.000000,-0.000000],
[0.000000,-0.000000,-0.214501,0.000000,-0.443936,0.000000,0.000000,0.000000,-0.000000,-0.000000],
[-0.000000,-0.172708,0.052662,-0.184544,0.000000,0.024721,0.000000,-0.300713,-0.414200,0.000000],
[-0.137718,0.000000,0.000000,-0.000000,-0.000000,0.258740,0.099708,0.000000,0.032948,-0.190810],
[-0.000000,-0.106000,0.195423,0.000000,-0.000000,0.029322,-0.000000,0.077991,0.000000,-0.000000],
[0.252584,-0.077399,-0.000000,-0.000000,0.000000,-0.338475,0.498515,0.000000,-0.238516,0.597768],
[-0.000000,0.000000,0.048298,-0.000000,-0.000000,0.000000,0.016180,-0.000000,0.176588,0.000000]]
generate_data(adj_matrix)

2 绘图

免费从Chiplot网络绘制,导入以上生成的三个表格,网站有具体的教程
ChiPlot网站

在这里插入图片描述

在这里插入图片描述

目录
相关文章
|
1月前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
287 55
|
2月前
|
数据采集 缓存 定位技术
网络延迟对Python爬虫速度的影响分析
网络延迟对Python爬虫速度的影响分析
|
2月前
|
Python
Python中的异步编程:使用asyncio和aiohttp实现高效网络请求
【10月更文挑战第34天】在Python的世界里,异步编程是提高效率的利器。本文将带你了解如何使用asyncio和aiohttp库来编写高效的网络请求代码。我们将通过一个简单的示例来展示如何利用这些工具来并发地处理多个网络请求,从而提高程序的整体性能。准备好让你的Python代码飞起来吧!
114 2
|
2月前
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
147 6
|
2月前
|
安全 网络安全 数据安全/隐私保护
|
1月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
191 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
2月前
|
关系型数据库 MySQL 数据库连接
python脚本:连接数据库,检查直播流是否可用
【10月更文挑战第13天】本脚本使用 `mysql-connector-python` 连接MySQL数据库,检查 `live_streams` 表中每个直播流URL的可用性。通过 `requests` 库发送HTTP请求,输出每个URL的检查结果。需安装 `mysql-connector-python` 和 `requests` 库,并配置数据库连接参数。
141 68
|
1月前
|
数据可视化 编译器 Python
Manim:数学可视化的强大工具 | python小知识
Manim(Manim Community Edition)是由3Blue1Brown的Grant Sanderson开发的数学动画引擎,专为数学和科学可视化设计。它结合了Python的灵活性与LaTeX的精确性,支持多领域的内容展示,能生成清晰、精确的数学动画,广泛应用于教育视频制作。安装简单,入门容易,适合教育工作者和编程爱好者使用。
405 7
|
2月前
|
网络安全 Python
Python网络编程小示例:生成CIDR表示的IP地址范围
本文介绍了如何使用Python生成CIDR表示的IP地址范围,通过解析CIDR字符串,将其转换为二进制形式,应用子网掩码,最终生成该CIDR块内所有可用的IP地址列表。示例代码利用了Python的`ipaddress`模块,展示了从指定CIDR表达式中提取所有IP地址的过程。
68 6
|
2月前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
90 8