8月3日云栖精选夜读:LSF-SCNN:一种基于CNN的短文本表达模型及相似度计算的全新优化模型

简介: 本文提出了基于词汇语义特征的跳跃卷积模型LSF-SCNN,通过引入三种优化策略:词汇语义特征LSF、跳跃卷积SC和K-Max均值采样KMA分别在词语、短语、句子粒度抽取更加丰富的语义特征,从而更好的在向量空间构建短文本语义表达模型,并广泛的适用于问答系统QA、释义识别PI和文本蕴含TE等计算成对儿出现的短文本的相似度的任务中。

本文提出了基于词汇语义特征的跳跃卷积模型LSF-SCNN,通过引入三种优化策略:词汇语义特征LSF、跳跃卷积SC和K-Max均值采样KMA分别在词语、短语、句子粒度抽取更加丰富的语义特征,从而更好的在向量空间构建短文本语义表达模型,并广泛的适用于问答系统QA、释义识别PI和文本蕴含TE等计算成对儿出现的短文本的相似度的任务中。


热点热

LSF-SCNN:一种基于CNN的短文本表达模型及相似度计算的全新优化模型

作者:阡阳

卷地风来忽吹散,积得飘零美如画(深度学习入门系列之十)

作者:【方向】

【沉淀】访谈阿里孙伟光:多行善事莫问前程的他,将计算集群的CPU利用率从30%提升到70%+

作者:【沉淀】

知识整理

MySQL中文乱码问题

作者:琴瑟

MySQL GTID 主从复制错误修复方法

作者:knightzxh   发表在:袋鼠云技术团队

人工智能之机器学习算法体系汇总

作者:王小雷

浅析分布式系统中的 Linearizability

作者:scorpion   发表在:阿里云 Serverless Computing

不懂GPU深度学习,何以谈人工智能?

作者:仁太

美文回顾

Maven POM 浅析

作者:钱小七同学

现阶段我国大数据共享面临的问题

作者:祁同伟

数据中心传统网络向新网络技术演进难题

作者:祁同伟

Java Thread 那些事

作者:冯嘉

Java中的伪共享以及应对方案

作者:卢子召

网络编程Socket

作者:乔布斯之魂

巅峰相遇:对话阿里AI大牛,用算法改变世界

作者:技术小能手   发表在:阿里技术


往期精选回
目录
相关文章
|
8天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
30天前
|
机器学习/深度学习 存储 人工智能
【AI系统】轻量级CNN模型综述
本文介绍了几种常见的小型化CNN模型,包括SqueezeNet、ShuffleNet、MobileNet等系列。这些模型通过减少参数量和计算量,实现在有限资源下高效运行,适用于存储和算力受限的场景。文章详细解释了各模型的核心技术和优化策略,如Fire Module、Channel Shuffle、Depthwise Separable Convolutions等,旨在帮助读者理解和应用这些高效的小型化CNN模型。
45 3
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-GRU网络的数据分类识别算法matlab仿真
本项目展示了使用MATLAB2022a实现的贝叶斯优化、CNN和GRU算法优化效果。优化前后对比显著,完整代码附带中文注释及操作视频。贝叶斯优化适用于黑盒函数,CNN用于时间序列特征提取,GRU改进了RNN的长序列处理能力。
|
3月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
3月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化卷积神经网络(Bayes-CNN)的多因子数据分类识别算法matlab仿真
本项目展示了贝叶斯优化在CNN中的应用,包括优化过程、训练与识别效果对比,以及标准CNN的识别结果。使用Matlab2022a开发,提供完整代码及视频教程。贝叶斯优化通过构建代理模型指导超参数优化,显著提升模型性能,适用于复杂数据分类任务。
|
3月前
|
机器学习/深度学习 编解码 算法
【深度学习】经典的深度学习模型-01 开山之作:CNN卷积神经网络LeNet-5
【深度学习】经典的深度学习模型-01 开山之作:CNN卷积神经网络LeNet-5
58 0
|
4月前
|
机器学习/深度学习
ACM MM24:复旦提出首个基于扩散模型的视频非限制性对抗攻击框架,主流CNN和ViT架构都防不住它
【9月更文挑战第23天】复旦大学研究团队提出了ReToMe-VA,一种基于扩散模型的视频非限制性对抗攻击框架,通过时间步长对抗性潜在优化(TALO)与递归令牌合并(ReToMe)策略,实现了高转移性且难以察觉的对抗性视频生成。TALO优化去噪步骤扰动,提升空间难以察觉性及计算效率;ReToMe则确保时间一致性,增强帧间交互。实验表明,ReToMe-VA在攻击转移性上超越现有方法,但面临计算成本高、实时应用受限及隐私安全等挑战。[论文链接](http://arxiv.org/abs/2408.05479)
91 3
|
5月前
|
机器学习/深度学习
CNN模型验证和CNN模型保存
【8月更文挑战第10天】CNN模型验证和CNN模型保存。
70 27
|
5月前
|
机器学习/深度学习
加载CNN保存模型
【8月更文挑战第10天】加载CNN保存模型。
48 12
|
5月前
|
机器学习/深度学习 算法 数据挖掘
基于WOA优化的CNN-LSTM的时间序列回归预测matlab仿真
本项目采用MATLAB 2022a实现时间序列预测,利用CNN与LSTM结合的优势,并以鲸鱼优化算法(WOA)优化模型超参数。CNN提取时间序列的局部特征,LSTM处理长期依赖关系,而WOA确保参数最优配置以提高预测准确性。完整代码附带中文注释及操作指南,运行效果无水印展示。

热门文章

最新文章