redis 6源码解析之 ziplist

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
全局流量管理 GTM,标准版 1个月
简介: redis 6源码解析之 ziplist

ziplist

ziplist结构

ziplist的布局如下,所有的字符默认使用小端序保存:

+--------+--------+--------+--------+-------+-------+-------+
|zlbytes | zltail |  zllen | entry  |  ...  | entry | zlend |
+--------+--------+--------+--------+-------+-------+-------+
  • uint32_t zlbytes:为一个无符号整数。保存了ziplist占用的字节数,包含zlbytes字段本身占用的4个字节。主要用于调整数据结构的大小。
  • uint32_t zltail:最后一个entry的字节偏移量(非zlend)。用于从list的另一端执行pop操作(即倒序遍历)
  • uint16_t zllen:entry的数目。当保存的entry大于216-2个entry时,则将该值设置为216-1,此时需要遍历整个entry list来计算list中的entry数目
  • uint8_t zlend:表示ziplist中的最后一个entry。字节编码等同于255(即FF)。表示ziplist的结束符

ziplist中的每个entry都使用一个元数据作为前缀,该元数据包含两部分的信息:首先保存了前一个entry的长度,用于倒序查找;再者保存了entry的编码类型,表示entry的类型,如整数或字符串,当编码类型为字符串时,该字段也表示了字符串的长度。字符串的entry-data的长度就等同于该字符串的长度,而整数的entry-data的长度需要根据编码类型进行判断,并不一定等同于其entry-data字符串的长度(见下文encoding)。一个完整的entry为:

+--------+--------+----------+
|prevlen |encoding|entry-data| 
+--------+--------+----------+

有时编码类型即表示entry本身(例如小的整数),这种情况下会忽略entry-data字段,此时entry变为:

+--------+--------+
|prevlen |encoding|
+--------+--------+

prevlen

prevlen表示前一个entry的长度,使用如下方式进行编码:当前一个entry的长度小于254(255是个特殊字符,被zlend使用)字节时,该字段会使用一个字节(即8 bit)表示长度;当长度大于或等于254时,将会使用5个字节,此时第一个字节会被设置为254(FE)来表示一个较大的数值,后续4个字节表示前面一个entry的长度。

因此,prevlen的编码为:

  • 如果前一个entry的长度小于254,编码为:
+-------+--------+-----+
|prevlen|encoding|entry| 
+-------+--------+-----+
  • 如果前一个entry的长度大于254,编码如下:
+----+---------------+--------+-----+
|0xFE|4 bytes prevlen|encoding|entry| 
+----+---------------+--------+-----+

encoding

entryencoding字段取决于entry的内容。当entry为字符串时,encoding的第一个字节的前2bit保存了编码类型,剩余的bit位表示字符串的长度。当entry为整数时,encoding仅占用1个字节,encoding的前2bit都设置为1,后续的2bit用于指定整数的类型,如int16_t,int32_t。encoding中的第一个字节总是用于判定entry的类型。举例如下:

* |00pppppp| - 1 byte
 *       字符串的长度小于或等于63字节(6 bits).
 *      "pppppp" 表示6bit长度的无符号整数.
 * |01pppppp|qqqqqqqq| - 2 bytes
 *       字符串的长度小于或等于16383字节(14 bits).
 *       IMPORTANT: 14 bit的数字使用大端序保存.
 * |10000000|qqqqqqqq|rrrrrrrr|ssssssss|tttttttt| - 5 bytes
 *      字符串的长度大于或等于16384字节,只使用第1个字节之后的4个字节表示长度,最大为32^2-1,第一个
 *      字节的低6位没有使用,设置为0。因此entry的最大长度为32
 *      IMPORTANT: 32 bit的数字使用大端序保存.
 * |11000000| - 3 bytes
 *      整数编码为int16_t (2 bytes).
 * |11010000| - 5 bytes
 *      整数编码为int32_t (4 bytes).
 * |11100000| - 9 bytes
 *      I整数编码为int64_t (8 bytes).
 * |11110000| - 4 bytes
 *      编码为24 bit的有符号整数 (3 bytes).
 * |11111110| - 2 bytes
 *      编码为8 bit的有符号整数 (1 byte).
 * |1111xxxx| - (xxxx  取值为 0000 到 1101) 表示4bit的整数
 *      无符号整数的取值为0到12,由于无法使用0000(被|11110000|编码占用)和1111(被zlend占用),因此取值
 *      为1到13,因此需要从低4位的整数减去1获得entry的值.
 * |11111111| - 表示ziplist的终止entry,即zlend

举例

整数编码

如下ziplist包含2个元素,表示字符串"2"和"5",长度为15字节,可以看到由于数值小于13,其编码和数值放在了一个字节中。

[0f 00 00 00] [0c 00 00 00] [02 00] [00 f3] [02 f6] [ff]
|             |          |       |       |     |
    zlbytes        zltail    entries   "2"     "5"   end

前4个字节(zlbytes)表示15,即整个ziplist包含的字节数;第2个4字节(zltail)最后一个entry的字节偏移,即字符串为"5"的entry的位置,偏移量为12字节;接下来的16bit(entries)表示ziplist中的entry的数目,为2;"00 f3"表示list中的第一个entry "2",它包含了前一个entry的长度(prevlen),为0,"f3"对应的编码为"|1111xxxx|","xxxx"的取值为0001到1101,去除前4个bit "1111",并减去1,得到entry的值为2。下一个entry的prevlen为2,表示前一个entry占用了2字节."f6"的编码与前一个相同,去除前4个bit,并减去1,得到entry的值为5;最后的"ff"表示ziplist的结束(zlend)。

字符串编码

在上述ziplist中追加一个"Hello World"的entry的编码。第一个字节表示前面entry的长度,第二个字节表示encoding,二进制为"|00pppppp|",因此"0b"表示一个11字节的字符串。从第3个字节(48)到最后一个字节(64)表示ASCII编码的字符串"Hello World"。

[02] [0b] [48 65 6c 6c 6f 20 57 6f 72 6c 64]

源码解析参见:ziplist.c

目录
相关文章
|
2月前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
88 2
|
13天前
|
存储 设计模式 算法
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
行为型模式用于描述程序在运行时复杂的流程控制,即描述多个类或对象之间怎样相互协作共同完成单个对象都无法单独完成的任务,它涉及算法与对象间职责的分配。行为型模式分为类行为模式和对象行为模式,前者采用继承机制来在类间分派行为,后者采用组合或聚合在对象间分配行为。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象行为模式比类行为模式具有更大的灵活性。 行为型模式分为: • 模板方法模式 • 策略模式 • 命令模式 • 职责链模式 • 状态模式 • 观察者模式 • 中介者模式 • 迭代器模式 • 访问者模式 • 备忘录模式 • 解释器模式
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
|
13天前
|
设计模式 存储 安全
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
结构型模式描述如何将类或对象按某种布局组成更大的结构。它分为类结构型模式和对象结构型模式,前者采用继承机制来组织接口和类,后者釆用组合或聚合来组合对象。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象结构型模式比类结构型模式具有更大的灵活性。 结构型模式分为以下 7 种: • 代理模式 • 适配器模式 • 装饰者模式 • 桥接模式 • 外观模式 • 组合模式 • 享元模式
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
|
13天前
|
设计模式 存储 安全
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
创建型模式的主要关注点是“怎样创建对象?”,它的主要特点是"将对象的创建与使用分离”。这样可以降低系统的耦合度,使用者不需要关注对象的创建细节。创建型模式分为5种:单例模式、工厂方法模式抽象工厂式、原型模式、建造者模式。
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
|
2月前
|
缓存 监控 Java
Java线程池提交任务流程底层源码与源码解析
【11月更文挑战第30天】嘿,各位技术爱好者们,今天咱们来聊聊Java线程池提交任务的底层源码与源码解析。作为一个资深的Java开发者,我相信你一定对线程池并不陌生。线程池作为并发编程中的一大利器,其重要性不言而喻。今天,我将以对话的方式,带你一步步深入线程池的奥秘,从概述到功能点,再到背景和业务点,最后到底层原理和示例,让你对线程池有一个全新的认识。
57 12
|
1月前
|
PyTorch Shell API
Ascend Extension for PyTorch的源码解析
本文介绍了Ascend对PyTorch代码的适配过程,包括源码下载、编译步骤及常见问题,详细解析了torch-npu编译后的文件结构和三种实现昇腾NPU算子调用的方式:通过torch的register方式、定义算子方式和API重定向映射方式。这对于开发者理解和使用Ascend平台上的PyTorch具有重要指导意义。
|
14天前
|
安全 搜索推荐 数据挖掘
陪玩系统源码开发流程解析,成品陪玩系统源码的优点
我们自主开发的多客陪玩系统源码,整合了市面上主流陪玩APP功能,支持二次开发。该系统适用于线上游戏陪玩、语音视频聊天、心理咨询等场景,提供用户注册管理、陪玩者资料库、预约匹配、实时通讯、支付结算、安全隐私保护、客户服务及数据分析等功能,打造综合性社交平台。随着互联网技术发展,陪玩系统正成为游戏爱好者的新宠,改变游戏体验并带来新的商业模式。
|
2月前
|
存储 安全 Linux
Golang的GMP调度模型与源码解析
【11月更文挑战第11天】GMP 调度模型是 Go 语言运行时系统的核心部分,用于高效管理和调度大量协程(goroutine)。它通过少量的操作系统线程(M)和逻辑处理器(P)来调度大量的轻量级协程(G),从而实现高性能的并发处理。GMP 模型通过本地队列和全局队列来减少锁竞争,提高调度效率。在 Go 源码中,`runtime.h` 文件定义了关键数据结构,`schedule()` 和 `findrunnable()` 函数实现了核心调度逻辑。通过深入研究 GMP 模型,可以更好地理解 Go 语言的并发机制。
|
2月前
|
消息中间件 缓存 安全
Future与FutureTask源码解析,接口阻塞问题及解决方案
【11月更文挑战第5天】在Java开发中,多线程编程是提高系统并发性能和资源利用率的重要手段。然而,多线程编程也带来了诸如线程安全、死锁、接口阻塞等一系列复杂问题。本文将深度剖析多线程优化技巧、Future与FutureTask的源码、接口阻塞问题及解决方案,并通过具体业务场景和Java代码示例进行实战演示。
63 3
|
2月前
|
存储 NoSQL 关系型数据库
Redis的ZSet底层数据结构,ZSet类型全面解析
Redis的ZSet底层数据结构,ZSet类型全面解析;应用场景、底层结构、常用命令;压缩列表ZipList、跳表SkipList;B+树与跳表对比,MySQL为什么使用B+树;ZSet为什么用跳表,而不是B+树、红黑树、二叉树