Prompt工程问题之AI Prompt对prompt的帮助优化如何解决

简介: Prompt工程问题之AI Prompt对prompt的帮助优化如何解决

问题一:什么是AI Prompt,它如何帮助优化prompt?


什么是AI Prompt,它如何帮助优化prompt?


参考回答:

AI Prompt是一种让AI帮助生成相关问题的prompt的方法。它允许用户向AI提出关于如何优化prompt的问题,AI会基于用户的Prompt提供一系列的建议和步骤,以生成更有效的prompt。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/628465



问题二:什么是COT(Chain Of Thought),它如何提高大模型的推理能力?


什么是COT(Chain Of Thought),它如何提高大模型的推理能力?


参考回答:

COT是一种在prompt中增加让模型逐步思考后给出答案的提示方法。它允许模型将问题分解为多个中间步骤,并解释它是如何得到答案的。这种方法能够显著提高大模型在复杂场景下的推理能力。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/628466



问题三:Prompt Chaining是如何工作的?


Prompt Chaining是如何工作的?


参考回答:

Prompt Chaining是一种将一个复杂推理任务分解为多个子任务的方法。它通过创建一系列针对子任务的提示操作,并将每个子任务的结果作为下一个子任务的输入,从而逐步推导出最终答案。这种方法有助于提高推理的准确性和透明度。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/628467



问题四:什么是TOT(Tree Of Thought)?


什么是TOT(Tree Of Thought)?


参考回答:

TOT是一种维护思维树的方法,用于在推理过程中对中间步骤进行评估与验证。它假设有多位专家独立地思考问题的每个步骤,并允许在发现错误步骤时排除相关专家。这种方法有助于确保推理过程中的每个步骤都是正确的。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/628468



问题五:RAG(Retrieval Augmented Generation)是什么?


RAG(Retrieval Augmented Generation)是什么?


参考回答:

RAG是一种结合信息检索和文本生成的人工智能技术。它允许大模型在推理过程中首先通过搜索获取相关信息,然后再进行推理生成一个连贯、准确的回答。这种方法有助于解决大模型知识不足的问题,并使其能够快速学习特定知识。同时,RAG还能帮助解决大模型幻觉问题,提高输出结果的可靠性。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/628469

相关文章
|
2月前
|
人工智能 IDE Java
AI Coding实践:CodeFuse + prompt 从系分到代码
在蚂蚁国际信贷业务系统建设过程中,技术团队始终面临双重考验:一方面需应对日益加速的需求迭代周期,满足严苛的代码质量规范与金融安全合规要求;另一方面,跨地域研发团队的协同效率与代码标准统一性,在传统开发模式下逐渐显现瓶颈。为突破效率制约、提升交付质量,我们积极探索人工智能辅助代码生成技术(AI Coding)的应用实践。本文基于蚂蚁国际信贷技术团队近期的实际项目经验,梳理AI辅助开发在金融级系统快速迭代场景中的实施要点并分享阶段性实践心得。
552 25
AI Coding实践:CodeFuse + prompt 从系分到代码
|
2月前
|
人工智能 自然语言处理 算法
AISEO咋做?2025年用AI优化SEO和GEO 的步骤
AISEO是AI与SEO结合的优化技术,通过人工智能生成关键词、标题、内容等,提升网站排名。它支持多语言、自动化创作,并利用高权重平台发布内容,让AI搜索更易抓取引用,实现品牌曝光与流量增长。
|
2月前
|
存储 机器学习/深度学习 人工智能
构建AI智能体:三、Prompt提示词工程:几句话让AI秒懂你心
本文深入浅出地讲解Prompt原理及其与大模型的关系,系统介绍Prompt的核心要素、编写原则与应用场景,帮助用户通过精准指令提升AI交互效率,释放大模型潜能。
561 5
|
2月前
|
数据采集 人工智能 程序员
PHP 程序员如何为 AI 浏览器(如 ChatGPT Atlas)优化网站
OpenAI推出ChatGPT Atlas,标志AI浏览器新方向。虽未颠覆现有格局,但为开发者带来新机遇。PHP建站者需关注AI爬虫抓取特性,优化技术结构(如SSR、Schema标记)、提升内容可读性与语义清晰度,并考虑未来agent调用能力。通过robots.txt授权、结构化数据、内容集群与性能优化,提升网站在AI搜索中的可见性与引用机会,提前布局AI驱动的流量新格局。
147 8
|
2月前
|
人工智能 搜索推荐 JavaScript
【微笑讲堂】深度解析:Geo优化中的Schema标签,如何让你的内容在AI时代脱颖而出?
微笑老师详解Geo优化中Schema标签的写法,揭示如何通过结构化数据提升AI时代下的内容可见性。从选择类型、填写关键属性到JSON-LD格式应用与测试验证,全面掌握Geo优化核心技巧,助力本地商家在搜索结果中脱颖而出。(238字)
221 4
|
2月前
|
存储 人工智能 OLAP
AI Agent越用越笨?阿里云AnalyticDB「AI上下文工程」一招破解!
AI上下文工程是优化大模型交互的系统化框架,通过管理指令、记忆、知识库等上下文要素,解决信息缺失、长度溢出与上下文失效等问题。依托AnalyticDB等技术,实现上下文的采集、存储、组装与调度,提升AI Agent的准确性与协同效率,助力企业构建高效、稳定的智能应用。
|
2月前
|
消息中间件 人工智能 安全
云原生进化论:加速构建 AI 应用
本文将和大家分享过去一年在支持企业构建 AI 应用过程的一些实践和思考。
583 41
|
2月前
|
人工智能 运维 Kubernetes
Serverless 应用引擎 SAE:为传统应用托底,为 AI 创新加速
在容器技术持续演进与 AI 全面爆发的当下,企业既要稳健托管传统业务,又要高效落地 AI 创新,如何在复杂的基础设施与频繁的版本变化中保持敏捷、稳定与低成本,成了所有技术团队的共同挑战。阿里云 Serverless 应用引擎(SAE)正是为应对这一时代挑战而生的破局者,SAE 以“免运维、强稳定、极致降本”为核心,通过一站式的应用级托管能力,同时支撑传统应用与 AI 应用,让企业把更多精力投入到业务创新。
469 30
|
3月前
|
人工智能 安全 中间件
阿里云 AI 中间件重磅发布,打通 AI 应用落地“最后一公里”
9 月 26 日,2025 云栖大会 AI 中间件:AI 时代的中间件技术演进与创新实践论坛上,阿里云智能集团资深技术专家林清山发表主题演讲《未来已来:下一代 AI 中间件重磅发布,解锁 AI 应用架构新范式》,重磅发布阿里云 AI 中间件,提供面向分布式多 Agent 架构的基座,包括:AgentScope-Java(兼容 Spring AI Alibaba 生态),AI MQ(基于Apache RocketMQ 的 AI 能力升级),AI 网关 Higress,AI 注册与配置中心 Nacos,以及覆盖模型与算力的 AI 可观测体系。
943 48