开源大模型与闭源大模型那个更好?

简介: 开源大模型与闭源大模型那个更好?

       开源大模型和闭源大模型各有其优势和劣势,究竟哪个更好取决于具体的应用场景、组织目标、资源和能力等因素。以下是两种模型的一些优势对比:


开源大模型的优势:

1. 社区支持与合作:开源大模型能够借助全球开发者社区的力量,形成跨地域、跨学科的协作网络,加速问题的解决和技术创新。

2. 透明性与可信赖性:源代码的公开使得任何人都可以进行审计和验证,提高了模型的透明度,有助于建立用户对技术的信任。

3. 低成本与易访问性:开源大模型通常可以免费使用或以极低的成本获得,降低了研发成本,易于定制化,且有丰富的教育资源。

4. 促进标准化:推动AI领域的标准化,使得使用相同开源模型的团队和组织更容易实现结果的可比性和可复现性。

5. 推动技术进步:通过开放的研究,学术界和工业界能够共同推动技术的边界,解决更加复杂的问题。


闭源大模型的优势:

1. 保护知识产权:闭源大模型可以更好地保护知识产权,防止技术被抄袭或盗用,保持技术领先地位。

2. 提高安全性:通过严格控制代码的访问权限,减少安全漏洞和恶意攻击的风险,提高软件的安全性和稳定性。

3. 满足定制化需求:闭源大模型可以根据客户的具体需求进行定制化开发,提供更加贴合客户需求的解决方案。

4. 获取商业利益:公司可以通过技术独占和独家授权等方式获取商业利益。

5. 质量控制与稳定性:闭源模型的开发通常伴随着严格的质量控制流程,确保模型的稳定性和可靠性。


       选择开源还是闭源大模型,需要根据组织的具体需求和战略目标来决定。对于致力于创新和研究的机构,开源大模型可能因其开放性和可访问性是更佳的选择。而对于旨在开发商业产品或提供服务的企业,在需要保护知识产权和遵守特定合规要求的情况下,闭源大模型可能更适。        


       参考国内目前的情况,选择开源大模型还是闭源大模型,需要考虑以下几个方面:


1. 技术创新与研究需求:

  - 如果目标是推动技术创新和学术研究,开源大模型可能更合适。中国拥有众多高校和研究机构,开源模型可以促进知识共享和技术交流,加速研究进展。


2. 产业发展与商业应用:

  - 对于企业尤其是初创公司而言,如果需要快速迭代产品并降低成本,开源大模型提供了一个低成本的起点。同时,企业可以在此基础上进行定制化开发,形成自己的竞争优势。

  - 对于那些需要保护核心技术和商业秘密的大型企业,闭源大模型可能更加合适。


3. 数据安全与隐私保护:

  - 鉴于国内对数据安全和隐私保护日益重视,闭源大模型可能更有利于企业控制数据访问和保护用户隐私,符合相关法律法规的要求。


4. 合规性与行业标准:

  - 在金融、医疗等高度监管的行业中,闭源大模型可以更好地定制以满足特定的合规性要求。


5. 社区与生态系统建设:

  - 开源大模型有助于构建一个活跃的技术社区和生态系统,这对于技术的发展和人才的培养都是有益的。


6. 国际合作与竞争:

  - 在全球化背景下,开源大模型可以促进国际合作,吸引全球人才和资源,提升国内AI技术的国际竞争力。


7. 政策支持与市场环境:

  - 国内政策对于开源技术的鼓励和支持程度,以及市场对于开源与闭源技术的接受度和需求,也是决定采用哪种模型的重要因素。


       总的来说,国内的情况可能更适合一个混合的策略,即在某些领域和场景下采用开源大模型以促进技术创新和社区发展,在其他需要保护商业秘密和满足特定合规要求的领域采用闭源大模型。这种灵活的策略可以帮助平衡技术发展、商业利益和法规要求。

相关实践学习
如何快速体验知识检索增强应用
在应用广场中您可以挑选智能体API应用、官方预置完整工程链路的知识检索增强(RAG)应用、流程编排应用,以及官方最佳实践的写作应用妙笔等,通过应用快速将通义千问系列等大语言模型能力接入到业务解决方案中。
相关文章
|
6月前
|
人工智能 自然语言处理 算法
谷歌推出”自我发现“框架,极大增强GPT-4等大模型推理能力
【4月更文挑战第20天】谷歌DeepMind团队推出了SELF-DISCOVER框架,让大型语言模型能自我发现并构建推理结构,提升在复杂任务中的性能。该框架模仿人类解决问题方式,分两阶段选择和适应原子推理模块,以解决挑战。在多任务测试中,SELF-DISCOVER相比传统方法表现出色,性能提升42%,计算量减少10至40倍。它具有跨模型应用的普适性,并与人类思维方式相通。然而,它在某些任务类型上仍有优化空间,且需解决计算成本问题。论文链接:https://arxiv.org/abs/2402.03620
92 1
|
6月前
|
人工智能 物联网 PyTorch
SCEdit:轻量级高效可控的AI图像生成微调框架(附魔搭社区训练实践教程)
SCEdit是一个高效的生成式微调框架,由阿里巴巴通义实验室基础视觉智能团队所提出。
|
机器学习/深度学习 人工智能 算法
深度强化学习中实验环境-开源平台框架汇总
深度强化学习中实验环境-开源平台框架汇总
284 0
|
13天前
|
自然语言处理 监控 API
"阿里云ModelScope深度测评:从预训练模型到一键部署,揭秘高效模型开发背后的秘密,开发者必备利器!"
【10月更文挑战第23天】阿里云ModelScope是一款便捷的模型开发、训练、部署和应用平台。它提供丰富的预训练模型,涵盖自然语言处理、计算机视觉等领域,支持一键式模型训练和部署,具备模型版本管理和监控功能,显著降低开发门槛,提高模型应用效率。
37 0
|
23天前
|
计算机视觉
Deepseek开源多模态LLM模型框架Janus,魔搭社区最佳实践
deepseek近期推出了简单、统一且灵活的多模态框架Janus,它能够统一处理多模态理解和生成任务。让我们一起来了解一下吧。
|
4月前
|
自然语言处理 测试技术 Python
开源创新框架MoA,可极大增强大模型的能力
【7月更文挑战第16天】MoA(Mixture-of-Agents)是一种创新框架,通过分层架构融合多个LLMs的专业知识,增强大模型能力。在AlpacaEval等基准测试中表现优越,展示出利用LLMs集体优势的巨大潜力。然而,模型复杂性、代理选择、可解释性和鲁棒性是待解决的挑战。[论文链接](https://arxiv.org/abs/2406.04692)
83 2
|
5月前
|
机器学习/深度学习 人工智能 算法
全面超越DPO:陈丹琦团队提出简单偏好优化SimPO,还炼出最强8B开源模型
【6月更文挑战第4天】普林斯顿大学陈丹琦团队推出SimPO,一种超越DPO的强化学习优化算法,旨在优化大型语言模型以符合人类价值观。SimPO通过序列平均对数概率作为奖励,提高计算效率并减少对参考模型的依赖。在多基准测试中,SimPO表现优秀,尤其在AlpacaEval 2和Arena-Hard上大幅超越现有方法。团队还基于Llama3-8B-Instruct创建了最强8B开源模型,推动AI技术发展。尽管存在超参数敏感性等挑战,SimPO仍为AI优化提供新途径。[论文链接](https://arxiv.org/pdf/2405.14734)
76 1
|
6月前
|
机器学习/深度学习 安全 算法框架/工具
开源vs闭源,大模型的未来在哪一边?
开源vs闭源,大模型的未来在哪一边?
开源vs闭源,大模型的未来在哪一边?
|
6月前
|
人工智能 自然语言处理 安全
【大模型】 基于AI和全球化进程的权衡:开源大模型与闭源大模型
【大模型】 基于AI和全球化进程的权衡:开源大模型与闭源大模型
118 0
|
机器学习/深度学习 人工智能 物联网
大模型时代,还缺一只雨燕 | SWIFT:魔搭社区轻量级微调推理框架
伴随着大数据的发展和强大的分布式并行计算能力,以预训练+微调的模型开发范式渐渐成为深度学习领域的主流。 2023年各家推出的大模型浩如烟海,如GPT4、Llama、ChatGLM、Baichuan、RWKV、Stable-Diffusion等。这些模型在达到越来越好的效果的同时也需要越来越多的算力资源:全量finetune它们动辄需要几十至上百G显存训练部署,一般的实验室和个人开发者无力承担。
下一篇
无影云桌面