Python实现随机森林回归模型(RandomForestRegressor算法)项目实战

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,5000CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: Python实现随机森林回归模型(RandomForestRegressor算法)项目实战

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

image.png

image.png

1.定义问题

在电子商务领域,现在越来越多的基于历史采购数据、订单数据等,进行销量的预测;本模型也是基于电商的一些历史数据进行销量的建模、预测。

2.获取数据

本数据是模拟数据,分为两部分数据:

训练数据集:data_train.xlsx

测试数据集:data_test.xlsx

在实际应用中,根据自己的数据进行替换即可。

特征数据:x1、x2、x3、x4、x5、x6、x7、x8、x9、x10

标签数据:y

3.数据预处理

1)数据描述性分析

image.png

 

2)数据完整性、数据类型查看:

image.png

从上图可以看到,x1变量存在空值。

 

3)数据缺失值个数:

image.png

可以看到x1变量缺失114个值。

 

4)缺失值数据比例:

image.png

可以看到x1变量缺失值占比0.5%

 

5)缺失值填充:这里通过业务上分析:填充0比较合适:

image.png

image.png

输出结果为0,说明已无缺失值。

 

6)哑变量处理

特征变量中x10的数值为文本类型:类型1、类型2,不符合机器学习数据要求,需要进行哑特征处理,变为0 1数值。

处理后,数据如下:

image.png

 

4.探索性数据分析

1)目标数据销量分析:

image.png

image.png

正偏态分析,数据主要集中在0-200之间。

 

偏度为:6.233259

峰度为:61.185221

 

偏度:正态分布的偏度为0。若数据分布是对称的,偏度 = 0。

若偏度 > 0,分布为右偏,即分布有一条长尾在右;

若偏度 < 0,分布为左偏,即分布有一条长尾在左。偏度的绝对值越大,说明分布的偏移程度越严重。

 

峰度:正态分布的峰度为0。

当峰度 > 0,它相比于正态分布要更陡峭或尾部更厚。

当峰度 < 0, 它相比于正态分布更平缓或尾部更薄。

 

2)特征变量x1和标签变量y关系的散点图:

image.png

通过上图可以看出,x1变量和y变量线性相关。

 

3)特征变量x5和标签变量y关系的散点图:

image.png

通过上图可以看出,x5变量和y变量线性相关。

 

4)相关性分析

image.png

说明:正值是正相关、负值时负相关,值越大变量之间的相关性越强。

x1到x9以及y之间的的相关性都比较强。

 

5.特征工程

1)特征数据和标签数据拆分,y为标签数据,除y之外的为特征数据;

image.png

2)训练集拆分,分为训练集和验证集,80%训练集和20%验证集;

image.png

 

特征工程还有很多其他内容,例如数据标准化、降维等等,这个根据实际情况来,本次建模不需要。 

6.机器建模  

1)建立随机森林回归模型,模型参数如下:

 

编号

参数

1

n_estimators=100

2

random_state=1

3

n_jobs=-1

 

其它参数根据具体数据,具体设置。

 

2)验证集结果输出与比对:一方面是生成excel表格数据;一方面是生成折线图。

image.png

image.png

 

3)生成决策树

由于树比较多 一下子全部转为图片 导致图片看不清晰,所以生成的格式为.dot格式,大家可以根据具体需要把dot转为图片。

不分展示:总共200多页。

 

image.png

 

7.模型评估

1)评估指标主要采用准确率分值、MAE、MSE、RMSE

 

编号

评估指标名称

评估指标值

1

准确率分值

0.9769

2

MAE

9.9431

3

MSE

2625.5679

4

RMSE

51.2402

 

通过上述表格可以看出,此随机森林模型效果良好。

 

2)模型特征重要性:一方面是输出到excel;一方面是生成柱状图。 

image.png

image.png

8.实际应用

根据最近一周的特征数据,来预测销量(这里的数据,是提前准备好的没有标签的数据)。预测结果如下;

image.png

可以根据预测的销量进行备货。


# 本次机器学习项目实战所需的资料,项目资源如下:
 
# 项目说明:
 
# 获取方式一:
 
# 项目实战合集导航:
 
https://docs.qq.com/sheet/DTVd0Y2NNQUlWcmd6?tab=BB08J2
 
# 获取方式二:
 
链接:https://pan.baidu.com/s/1_u0XJKK1RTYLJf82WugmAA 
提取码:bx3h
相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
1天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品加工优化的深度学习模型
使用Python实现智能食品加工优化的深度学习模型
90 59
|
2天前
|
机器学习/深度学习 数据采集 数据库
使用Python实现智能食品营养分析的深度学习模型
使用Python实现智能食品营养分析的深度学习模型
21 6
|
1天前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
15 2
|
1天前
|
机器学习/深度学习 算法 PyTorch
用Python实现简单机器学习模型:以鸢尾花数据集为例
用Python实现简单机器学习模型:以鸢尾花数据集为例
10 1
|
4天前
|
机器学习/深度学习 供应链 安全
使用Python实现智能食品供应链管理的深度学习模型
使用Python实现智能食品供应链管理的深度学习模型
22 3
|
3天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品安全监测的深度学习模型
使用Python实现智能食品安全监测的深度学习模型
17 0
|
10天前
|
设计模式 开发者 Python
Python编程中的设计模式:工厂方法模式###
本文深入浅出地探讨了Python编程中的一种重要设计模式——工厂方法模式。通过具体案例和代码示例,我们将了解工厂方法模式的定义、应用场景、实现步骤以及其优势与潜在缺点。无论你是Python新手还是有经验的开发者,都能从本文中获得关于如何在实际项目中有效应用工厂方法模式的启发。 ###
|
1天前
|
Python
不容错过!Python中图的精妙表示与高效遍历策略,提升你的编程艺术感
本文介绍了Python中图的表示方法及遍历策略。图可通过邻接表或邻接矩阵表示,前者节省空间适合稀疏图,后者便于检查连接但占用更多空间。文章详细展示了邻接表和邻接矩阵的实现,并讲解了深度优先搜索(DFS)和广度优先搜索(BFS)的遍历方法,帮助读者掌握图的基本操作和应用技巧。
13 4
|
1天前
|
设计模式 程序员 数据处理
编程之旅:探索Python中的装饰器
【10月更文挑战第34天】在编程的海洋中,Python这艘航船以其简洁优雅著称。其中,装饰器作为一项高级特性,如同船上的风帆,让代码更加灵活和强大。本文将带你领略装饰器的奥秘,从基础概念到实际应用,一起感受编程之美。
|
3天前
|
存储 人工智能 数据挖掘
从零起步,揭秘Python编程如何带你从新手村迈向高手殿堂
【10月更文挑战第32天】Python,诞生于1991年的高级编程语言,以其简洁明了的语法成为众多程序员的入门首选。从基础的变量类型、控制流到列表、字典等数据结构,再到函数定义与调用及面向对象编程,Python提供了丰富的功能和强大的库支持,适用于Web开发、数据分析、人工智能等多个领域。学习Python不仅是掌握一门语言,更是加入一个充满活力的技术社区,开启探索未知世界的旅程。
13 5