【坚果识别】果实识别+图像识别系统+Python+计算机课设+人工智能课设+卷积算法

简介: 坚果识别系统,使用Python语言进行开发,通过TensorFlow搭建卷积神经网络算法模型,对10种坚果果实('杏仁', '巴西坚果', '腰果', '椰子', '榛子', '夏威夷果', '山核桃', '松子', '开心果', '核桃')等图片数据集进行训练,得到一个识别精度较高的模型文件,让后使用Django搭建Web网页端界面操作平台,实现用户上传一张坚果图片 识别其名称。

一、介绍

坚果识别系统,使用Python语言进行开发,通过TensorFlow搭建卷积神经网络算法模型,对10种坚果果实('杏仁', '巴西坚果', '腰果', '椰子', '榛子', '夏威夷果', '山核桃', '松子', '开心果', '核桃')等图片数据集进行训练,得到一个识别精度较高的模型文件,让后使用Django搭建Web网页端界面操作平台,实现用户上传一张坚果图片 识别其名称。

二、系统效果图片展示

img_07_03_20_28_56

img_07_03_20_29_09

img_07_03_20_29_24

img_07_03_20_29_39

三、演示视频 and 完整代码 and 安装

地址:https://www.yuque.com/ziwu/yygu3z/wm69eif83lvcqg4g

四、卷积神经网络特点及原理

卷积神经网络(CNN)是一种特别适用于处理图像和视频数据的深度学习模型。它的设计灵感来源于生物视觉系统的结构,尤其是猫的视觉皮层。CNN的关键特点和工作原理可以总结如下:
层级结构:
CNN由多个层组成,每层都有特定的功能。最常见的层包括:

  • 卷积层(Convolutional Layer):这是CNN的核心。卷积层通过卷积核(小矩阵)在输入图像上滑动,对每个位置进行计算,从而提取图像的局部特征。每个卷积核可以识别图像中的不同特征,如边缘、纹理等。
  • 激活层(Activation Layer):通常使用ReLU(Rectified Linear Unit)激活函数,将卷积层输出的负值变为零,增加模型的非线性,使其能够更好地表示复杂特征。
  • 池化层(Pooling Layer):通过下采样(如最大池化或平均池化)减少特征图的尺寸,从而降低计算量和防止过拟合。
  • 全连接层(Fully Connected Layer):连接所有神经元,通常用于分类任务的最后几层,将特征图转换为类别概率。

特征提取与学习:
在图像识别过程中,CNN能够自动从输入图像中提取多层次的特征。比如,最初几层可能会提取简单的边缘和线条,中间几层会提取复杂的图案和形状,最后几层则会识别出高层次的语义信息,如人脸、汽车等。
实现图像识别的过程:
CNN实现图像识别的过程可以概括为以下几个步骤:

  1. 输入图像:将图像输入到卷积神经网络中。
  2. 特征提取:通过多个卷积层、激活层和池化层,逐层提取图像的特征。
  3. 分类:将提取的特征输入到全连接层,通过Softmax或其他激活函数输出各类别的概率。
  4. 预测结果:根据输出的概率值,选择概率最高的类别作为预测结果。
目录
相关文章
|
13天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
64 4
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
1月前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
285 55
|
1月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
188 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
2月前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
110 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-19
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-19
80 3
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-16
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-16
51 1
|
3月前
|
机器学习/深度学习 人工智能 算法
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-15
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-15
94 1
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-14
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-14
63 1
|
3月前
|
存储 人工智能 算法
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-18
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-18
54 0
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-17
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-17
80 0