C++一分钟之-未来与承诺:std::future与std::promise

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: 【6月更文挑战第27天】`std::future`和`std::promise`是C++异步编程的关键工具,用于处理未完成任务的结果。`future`代表异步任务的结果容器,可阻塞等待或检查结果是否就绪;`promise`用于设置`future`的值,允许多线程间通信。常见问题包括异常安全、多重获取、线程同步和未检查状态。解决办法涉及智能指针管理、明确获取时机、确保线程安全以及检查未来状态。示例展示了使用`std::async`和`future`执行异步任务并获取结果。

在现代C++编程中,std::futurestd::promise是异步编程模型中的两个重要组件,它们构成了C++标准库中处理异步计算结果的基础。本文将深入浅出地介绍这两个概念,探讨它们的应用场景、常见问题、易错点及如何避免,同时辅以代码示例,帮助读者更好地理解和运用这些机制。
image.png

一、未来(std::future)与承诺(std::promise)

1.1 未来(std::future)

std::future代表一个可能尚未完成的异步任务的结果。一旦关联的任务完成,你可以通过future对象获取或等待这个结果。它就像是一个装着未来结果的容器,你可以选择阻塞等待结果,或者检查结果是否已准备好。

1.2 承诺(std::promise)

std::promise则是用来设置std::future值的对象。它允许你在某个时刻将结果存储起来,而这个结果可以被关联的future对象获取。promise就像是一个承诺,保证会提供一个结果给那些等待它的future

二、应用场景

  • 异步任务处理:当一个任务需要较长时间执行,且不希望阻塞主线程时,可以启动一个异步任务,并用std::future来接收其结果。
  • 并发编程:在多线程环境中,std::promisestd::future可以用来在不同线程间传递数据,实现线程间的通信。
  • 任务结果缓存:对于耗时但结果可复用的计算,可以先用std::async结合std::future执行一次,后续直接从future获取结果,避免重复计算。

三、常见问题与易错点

3.1 异常安全

当向std::promise设置值时抛出异常,如果没有妥善处理,可能会导致结果永远不会被设置,而等待的std::future将永远阻塞。

3.2 多重获取

std::future的结果只能获取一次。尝试再次调用get()会导致未定义行为。

3.3 错误的线程同步

在多线程环境下,没有正确同步对std::promise的访问可能导致数据竞争。

3.4 忘记检查std::future的状态

直接调用get()而不先检查is_ready()状态,可能会导致当前线程阻塞,特别是在结果还未准备好时。

四、如何避免这些问题

4.1 使用智能指针管理std::promise

利用std::shared_ptr<std::promise<T>>可以在异常发生时,通过智能指针的生命周期管理自动清理资源,确保结果能被正确设置。

4.2 明确获取结果的时机

使用std::future::wait_for()std::future::wait_until()来控制等待时间,避免无限期阻塞。

4.3 确保线程安全

使用互斥锁或其他同步原语保护对std::promise的操作,防止数据竞争。

4.4 检查未来状态

在调用get()之前,先检查std::future::valid()std::future::wait_for(),确保操作的安全性。

五、代码示例

下面的示例展示了如何使用std::async启动一个异步任务,并通过std::future获取结果。

#include <iostream>
#include <future>
#include <thread>
#include <chrono>

// 异步任务函数
int heavyComputation() {
   
   
    std::this_thread::sleep_for(std::chrono::seconds(2)); // 模拟耗时操作
    return 42; // 返回计算结果
}

int main() {
   
   
    // 启动异步任务并获取future
    std::future<int> result_future = std::async(std::launch::async, heavyComputation);

    std::cout << "Doing something else...\n";

    // 获取结果,如果结果还没准备好,这会阻塞直到结果可用
    int result = result_future.get();
    std::cout << "The result is: " << result << std::endl;

    return 0;
}

在这个例子中,heavyComputation函数在一个单独的线程中执行,而主线程继续执行其他任务,最后通过get()方法等待并获取结果。

通过理解std::futurestd::promise的工作原理及其最佳实践,开发者能够更高效、安全地编写异步和并发代码,充分利用现代硬件的多核优势,提升程序性能。

目录
相关文章
|
3月前
|
安全 C++
C++: std::once_flag 和 std::call_once
`std::once_flag` 和 `std::call_once` 是 C++11 引入的同步原语,确保某个函数在多线程环境中仅执行一次。
|
5月前
|
存储 C++ 运维
开发与运维函数问题之使用C++标准库中的std::function来简化回调函数的使用如何解决
开发与运维函数问题之使用C++标准库中的std::function来简化回调函数的使用如何解决
55 6
|
5月前
|
C++ 运维
开发与运维编译问题之在C++中在使用std::mutex后能自动释放锁如何解决
开发与运维编译问题之在C++中在使用std::mutex后能自动释放锁如何解决
73 2
|
6月前
|
存储 设计模式 安全
C++一分钟之-并发编程基础:线程与std::thread
【6月更文挑战第26天】C++11的`std::thread`简化了多线程编程,允许并发执行任务以提升效率。文中介绍了创建线程的基本方法,包括使用函数和lambda表达式,并强调了数据竞争、线程生命周期管理及异常安全等关键问题。通过示例展示了如何用互斥锁避免数据竞争,还提及了线程属性定制、线程局部存储和同步工具。理解并发编程的挑战与解决方案是提升程序性能的关键。
85 3
|
15天前
|
存储 编译器 C语言
【c++丨STL】string类的使用
本文介绍了C++中`string`类的基本概念及其主要接口。`string`类在C++标准库中扮演着重要角色,它提供了比C语言中字符串处理函数更丰富、安全和便捷的功能。文章详细讲解了`string`类的构造函数、赋值运算符、容量管理接口、元素访问及遍历方法、字符串修改操作、字符串运算接口、常量成员和非成员函数等内容。通过实例演示了如何使用这些接口进行字符串的创建、修改、查找和比较等操作,帮助读者更好地理解和掌握`string`类的应用。
25 2
|
21天前
|
存储 编译器 C++
【c++】类和对象(下)(取地址运算符重载、深究构造函数、类型转换、static修饰成员、友元、内部类、匿名对象)
本文介绍了C++中类和对象的高级特性,包括取地址运算符重载、构造函数的初始化列表、类型转换、static修饰成员、友元、内部类及匿名对象等内容。文章详细解释了每个概念的使用方法和注意事项,帮助读者深入了解C++面向对象编程的核心机制。
54 5
|
27天前
|
存储 编译器 C++
【c++】类和对象(中)(构造函数、析构函数、拷贝构造、赋值重载)
本文深入探讨了C++类的默认成员函数,包括构造函数、析构函数、拷贝构造函数和赋值重载。构造函数用于对象的初始化,析构函数用于对象销毁时的资源清理,拷贝构造函数用于对象的拷贝,赋值重载用于已存在对象的赋值。文章详细介绍了每个函数的特点、使用方法及注意事项,并提供了代码示例。这些默认成员函数确保了资源的正确管理和对象状态的维护。
56 4
|
28天前
|
存储 编译器 Linux
【c++】类和对象(上)(类的定义格式、访问限定符、类域、类的实例化、对象的内存大小、this指针)
本文介绍了C++中的类和对象,包括类的概念、定义格式、访问限定符、类域、对象的创建及内存大小、以及this指针。通过示例代码详细解释了类的定义、成员函数和成员变量的作用,以及如何使用访问限定符控制成员的访问权限。此外,还讨论了对象的内存分配规则和this指针的使用场景,帮助读者深入理解面向对象编程的核心概念。
66 4
|
2月前
|
存储 编译器 对象存储
【C++打怪之路Lv5】-- 类和对象(下)
【C++打怪之路Lv5】-- 类和对象(下)
28 4
|
2月前
|
编译器 C语言 C++
【C++打怪之路Lv4】-- 类和对象(中)
【C++打怪之路Lv4】-- 类和对象(中)
25 4