基于YOLOv8深度学习的人脸面部表情识别系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战

简介: 基于YOLOv8深度学习的人脸面部表情识别系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战

前言

人脸面部表情识别在多个领域中都扮演着重要的角色,通过解读人的情绪反应,增强机器与人之间的交互体验。

在人机交互中,面部表情系统可以使计算机更加智能化,能够理解和响应用户的情感状态,从而提供更加个性化和富有同理心的服务。例如,在教育领域,该技术能够识别学生的情绪变化,帮助教师调整教学方式以提高学生的学习效率;在心理健康领域,它可以作为情绪监测工具,帮助医生评估患者情绪状态,辅助诊断和治疗;在自动驾驶系统中,通过监测驾驶员的表情和状态,可以有效预防疲劳或注意力不集中驾驶带来的风险。

此外,人脸面部表情识别技术在市场研究和用户体验设计中也极为有用,能够识别消费者在看到某个产品或广告时的真实情绪反应,从而帮助企业更好地了解消费者需求,优化产品设计和营销策略。在智能家居和安全监控系统中,结合情绪识别可以提供更加人性化的服务,如根据用户的情绪状态调整室内的灯光、音乐等环境设置,或是及时警觉异常情绪状态来预防潜在风险。除此之外,面部表情识别技术还广泛应用于娱乐产业,如视频游戏和虚拟现实中,以提供更加沉浸和互动的用户体验。

综上所述,人脸面部表情识别技术开启了新一代人机交互的大门,它的应用场景广泛,从提高商业价值到增进人类福祉,这项技术的发展极具潜力并正在逐渐改变我们的生活与工作方式。

博主通过搜集不同种类的人脸表情的相关数据图片,根据YOLOv8的目标检测技术,基于python与Pyqt5开发了一款界面简洁的人脸面部表情识别系统,可支持图片、视频以及摄像头检测,同时可以将图片或者视频检测结果进行保存

软件初始界面如下图所示:

检测结果界面如下:


一、软件核心功能介绍及效果演示

软件主要功能

1. 可进行7种不同人物表情识别,表情分别为:['生气','厌恶','害怕','高兴','中立','伤心','惊讶'];
2. 支持图片、视频及摄像头进行人脸表情检测;
3. 界面可实时显示表情结果置信度各表情概率值等信息;

(1)图片检测演示

点击打开图片图标,选择需要检测的图片,会显示检测结果,同时会将7种表情的概率值显示在右方。操作演示如下:点击目标下拉框后,可以选定指定目标的结果信息进行显示。

注:1.右侧目标默认显示置信度最大一个目标。

单个图片检测操作如下:

(2)视频检测演示

点击打开视频按钮,打开选择需要检测的视频,就会自动显示检测结果。

(3)摄像头检测演示

点击打开摄像头按钮,可以打开摄像头,可以实时进行检测,再次点击摄像头按钮,可关闭摄像头。

二、模型的训练、评估与推理

1.YOLOv8的基本原理

YOLOv8是一种前沿的目标检测技术,它基于先前YOLO版本在目标检测任务上的成功,进一步提升了性能和灵活性。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行

其主要网络结构如下:

本文的人脸表情识别,主要分为两步。第一步:检测人脸位置第二步:将人脸位置截取出来,作为输入传入到使用YOLOv8训练的表情分类模型,从而得到表情识别的结果。

第一步:人脸位置检测

关于人脸位置检测的方法有很多,比如:opencv的dilb库,face_recognition,insightface,mediapipe,deepface等都可以进行人脸位置检测。因为本文主要是对人脸面部表情进行识别,重点实现的是第二部分的表情识别部分。因此对于第一步,本文直接使用的是通过yolov8官方训练好的人脸检测模型yolov8n-face.pt,来进行人脸位置检测,该模型是通过人脸目标数据集训练而来,精度较高。

具体使用方法如下:

#coding:utf-8
from ultralytics import YOLO
import cv2
if __name__ == '__main__':
    # 所需加载的模型目录
    path = 'models/yolov8n-face.pt'
    # 需要检测的图片地址
    img_path = "TestFiles/test3.jpg"
    model = YOLO(path, task='detect')
    # 检测图片
    results = model(img_path,conf=0.5)
    res = results[0].boxes.xyxy.tolist()
    print(res)
    img = cv2.imread(img_path)
    for each in res:
        # 开始的y坐标:结束的y坐标,开始x:结束的x
        x1,y1,x2,y2 = each[:4]
        x1 = int(x1)
        y1 = int(y1)
        x2 = int(x2)
        y2 = int(y2)
        cv2.rectangle(img, (x1, y1), (x2, y2), (50, 50, 250), 3)
    cv2.imshow('face_detection', img)
    cv2.waitKey(0)


以上结果可以发现,该模型能够很好的检测人脸位置。下面我们需要使用yolov8训练一个表情识别的模型,对于检测到的人脸进行表情的识别判断

第二步:人脸表情识别

1. 数据集准备与训练

本文使用的数据集为人脸面部表情分类数据集,包含7种不同的人脸表情,分别是:['生气','厌恶','害怕','高兴','中立','伤心','惊讶']。一共包含35257张图片,其中训练集包含28079张图片,测试集包含7178张图片。部分数据集及类别信息如下。下面我们将使用该数据集训练一个表情分类模型,用于对截取后的人脸部分进行表情分类,从而达到进行表情识别的目的。


图片数据集的存放格式如下,在项目目录中新建datasets目录,同时将分类的图片分为训练集与验证集放入ExpressionData目录下。

2.模型训练

数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:

#coding:utf-8
from ultralytics import YOLO
# 加载预训练模型
model = YOLO("yolov8n-cls.pt")
if __name__ == '__main__':
    model.train(data='datasets/ExpressionData', epochs=300, batch=4)
    # results = model.val()
    # # results = model("自己的验证图片")

3. 训练结果评估

在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:

本文训练结果如下:

4. 利用模型进行表情识别

模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt文件,在runs/trian/weights目录下。我们可以使用该文件进行后续的推理检测。

图片检测代码如下:

#coding:utf-8
from ultralytics import YOLO
import cv2
import Config
import detect_tools as tools
import numpy as np
if __name__ == '__main__':
    img_path = 'TestFiles/12.png'
    # 所需加载的模型目录
    face_model_path = 'models/yolov8n-face.pt'
    expression_model_path = 'models/expression_cls.pt'
    # 人脸检测模型
    face_model = YOLO(face_model_path, task='detect')
    # 表情识别模型
    expression_model = YOLO(expression_model_path, task='classify')
    cv_img = tools.img_cvread(img_path)
    face_cvimg, faces, locations = face_detect(cv_img, face_model)
    if faces is not None:
        for i in range(len(faces)):
            left, top, right, bottom = locations[i]
            # 彩色图片变灰度图
            img = cv2.cvtColor(faces[i], cv2.COLOR_BGR2GRAY)
            # 灰度图变3通道
            img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
            rec_res = expression_model(img)
            probs = rec_res[0].probs.data.tolist()
            num = np.argmax(probs)
            label = Config.names[num]
            face_cvimg = cv2.putText(face_cvimg, label, ((left, top - 10)), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 0, 250),
                                     2, cv2.LINE_AA)
    cv2.imshow('yolov8_detections',face_cvimg)
    cv2.waitKey(0)

执行上述代码后,会将执行的结果直接标注在图片上,结果如下:


以上便是关于此款人脸面部表情识别系统的原理与代码介绍。基于此模型,博主用pythonPyqt5开发了一个带界面的软件系统,即文中第二部分的演示内容,能够很好的支持图片、视频及摄像头进行检测

相关文章
|
2天前
|
设计模式 缓存 监控
Python中的装饰器:代码的魔法增强剂
在Python编程中,装饰器是一种强大而灵活的工具,它允许程序员在不修改函数或方法源代码的情况下增加额外的功能。本文将探讨装饰器的定义、工作原理以及如何通过自定义和标准库中的装饰器来优化代码结构和提高开发效率。通过实例演示,我们将深入了解装饰器的应用,包括日志记录、性能测量、事务处理等常见场景。此外,我们还将讨论装饰器的高级用法,如带参数的装饰器和类装饰器,为读者提供全面的装饰器使用指南。
|
2天前
|
数据库 Python
异步编程不再难!Python asyncio库实战,让你的代码流畅如丝!
在编程中,随着应用复杂度的提升,对并发和异步处理的需求日益增长。Python的asyncio库通过async和await关键字,简化了异步编程,使其变得流畅高效。本文将通过实战示例,介绍异步编程的基本概念、如何使用asyncio编写异步代码以及处理多个异步任务的方法,帮助你掌握异步编程技巧,提高代码性能。
11 4
|
10天前
|
机器学习/深度学习 数据采集 人工智能
AI赋能教育:深度学习在个性化学习系统中的应用
【10月更文挑战第26天】随着人工智能的发展,深度学习技术正逐步应用于教育领域,特别是个性化学习系统中。通过分析学生的学习数据,深度学习模型能够精准预测学生的学习表现,并为其推荐合适的学习资源和规划学习路径,从而提供更加高效、有趣和个性化的学习体验。
59 9
|
7天前
|
机器学习/深度学习 人工智能 监控
深度学习在图像识别中的应用与挑战
本文探讨了深度学习技术在图像识别领域的应用,并分析了当前面临的主要挑战。随着卷积神经网络(CNN)的发展,图像识别的准确性和效率得到了显著提升。然而,数据不平衡、模型泛化能力、计算资源消耗等问题仍然是制约深度学习在图像识别领域进一步发展的关键因素。本文将详细介绍深度学习在图像识别中的应用案例,并讨论解决现有挑战的可能策略。
|
4天前
|
机器学习/深度学习 传感器 监控
深度学习在图像识别中的突破与应用
随着人工智能的飞速发展,深度学习已经成为推动图像识别技术进步的核心动力。本文旨在探讨深度学习在图像识别领域的最新突破及其广泛应用,通过分析卷积神经网络(CNN)等关键技术的发展,揭示深度学习如何革新传统图像处理方式,提升识别精度和效率。文章还将概述当前面临的挑战与未来发展趋势,为读者提供一个全面而深入的技术视角。
|
9天前
|
机器学习/深度学习 监控 自动驾驶
深度学习在图像识别中的应用与挑战
本文探讨了深度学习在图像识别领域的应用现状,分析了其面临的主要技术挑战和解决方案。通过对比传统方法和深度学习模型的优势,揭示了深度学习如何推动图像识别技术的发展,并展望了未来的研究方向。
|
6天前
|
机器学习/深度学习 分布式计算 自动驾驶
深度学习在图像识别中的革命性应用####
【10月更文挑战第29天】 本文深入探讨了深度学习技术如何彻底革新图像识别领域,通过卷积神经网络(CNN)的架构优化、数据集增强策略及迁移学习的应用,显著提升了图像分类与目标检测的准确率。文章概述了深度学习模型训练的关键挑战,如过拟合、计算资源依赖性,并提出了创新性解决方案,包括正则化技术、分布式计算框架及自适应学习率调整策略。强调了深度学习在自动驾驶、医疗影像分析等领域的广阔应用前景,同时指出了隐私保护、模型可解释性等伦理法律问题的重要性,为未来研究提供了方向。 ####
25 5
|
4天前
|
机器学习/深度学习 TensorFlow 算法框架/工具
深度学习在图像识别中的应用
【10月更文挑战第32天】本文将介绍深度学习在图像识别领域的应用,包括基本原理、常用模型和实际案例。我们将探讨如何利用深度学习技术提高图像识别的准确性和效率,并展示一些代码示例。通过阅读本文,您将了解到深度学习在图像识别中的强大潜力和应用价值。
|
7天前
|
机器学习/深度学习 人工智能 算法
探索深度学习在图像识别中的应用与挑战
【10月更文挑战第28天】 本文深入探讨了深度学习技术,特别是卷积神经网络(CNN)在图像识别领域的应用及其面临的主要挑战。通过分析CNN的工作原理和架构设计,揭示了其在处理大规模图像数据时的优势。同时,本文也讨论了当前深度学习模型在图像识别任务中遇到的一些关键问题,如过拟合、数据不平衡以及计算资源的需求等,并提出了相应的解决策略。此外,文章还展望了未来深度学习技术在图像识别领域的发展方向,包括模型优化、算法创新及应用场景的拓展。
25 1
|
13天前
|
机器学习/深度学习 算法 计算机视觉
深度学习在图像识别中的应用与挑战
【10月更文挑战第22天】 本文深入探讨了深度学习在图像识别领域的应用,分析了其技术原理、优势以及面临的挑战。通过实例展示了深度学习如何推动图像识别技术的发展,并对未来趋势进行了展望。
32 5
下一篇
无影云桌面