【从零开始学习深度学习】47. Pytorch图片样式迁移实战:将一张图片样式迁移至另一张图片,创作自己喜欢风格的图片【含完整源码】

简介: 【从零开始学习深度学习】47. Pytorch图片样式迁移实战:将一张图片样式迁移至另一张图片,创作自己喜欢风格的图片【含完整源码】

本文将介绍如何使用卷积神经网络自动将某图像中的样式应用在另一图像之上,即样式迁移(style transfer)。这里我们需要两张输入图像,一张是内容图像,另一张是样式图像,我们将使用神经网络修改内容图像使其在样式上接近样式图像。下图中的内容图像为雷尼尔山国家公园(Mount Rainier National Park)的风景照,而样式图像则是一副主题为秋天橡树的油画。最终输出的合成图像在保留了内容图像中物体主体形状的情况下应用了样式图像的油画笔触,同时也让整体颜色更加鲜艳。

1. 图片样式迁移的方法介绍

下图用一个例子来阐述基于卷积神经网络的样式迁移方法。首先,我们初始化合成图像,例如将其初始化成内容图像。该合成图像是样式迁移过程中唯一需要更新的变量,即样式迁移所需迭代的模型参数。然后,我们选择一个预训练的卷积神经网络来抽取图像的特征,其中的模型参数在训练中无须更新深度卷积神经网络凭借多个层逐级抽取图像的特征。我们可以选择其中某些层的输出作为内容特征或样式特征。以上图为例,这里选取的预训练的神经网络含有3个卷积层,其中第二层输出图像的内容特征,而第一层和第三层的输出被作为图像的样式特征。接下来,我们通过正向传播(实线箭头方向)计算样式迁移的损失函数,并通过反向传播(虚线箭头方向)迭代模型参数,即不断更新合成图像。样式迁移常用的损失函数由3部分组成:内容损失(content loss)使合成图像与内容图像在内容特征上接近,样式损失(style loss)令合成图像与样式图像在样式特征上接近,而总变差损失(total variation loss)则有助于减少合成图像中的噪点。最后,当模型训练结束时,我们输出样式迁移的模型参数,即得到最终的合成图像。

下面,我们通过实验来进一步了解样式迁移的技术细节。实验需要用到一些导入的包或模块。

%matplotlib inline
import time
import torch
import torch.nn.functional as F
import torchvision
import numpy as np
from PIL import Image
import sys
import d2lzh_pytorch as d2l
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

2. 读取内容图像和样式图像

首先,我们分别读取内容图像和样式图像。从打印出的图像坐标轴可以看出,它们的尺寸并不一样。

关注GZH:阿旭算法与机器学习,回复:“图片样式迁移”即可获取本文数据集与项目文档

d2l.set_figsize()
content_img = Image.open('./img/rainier.jpg')
d2l.plt.imshow(content_img);

d2l.set_figsize()
style_img = Image.open('./img/autumn_oak.jpg')
d2l.plt.imshow(style_img);

3. 图像的预处理和后处理

下面定义图像的预处理函数和后处理函数。预处理函数preprocess先更改输入图像的尺寸,然后再将PIL图片转成卷积神经网络接受的输入格式,再在RGB三个通道分别做标准化,由于预训练模型是在均值为[0.485, 0.456, 0.406]标准差为[0.229, 0.224, 0.225]的图片数据上预训练的,所以我们要将图片标准化保持相同的均值和标准差。后处理函数postprocess则将输出图像中的像素值还原回标准化之前的值。由于图像每个像素的浮点数值在0到1之间,我们使用clamp函数对小于0和大于1的值分别取0和1。

torchvision.transforms模块有大量现成的转换方法,不过需要注意的是有的方法输入的是PIL图像,如Resize;有的方法输入的是tensor,如Normalize;而还有的是用于二者转换,如ToTensor将PIL图像转换成tensor。一定要注意这点,使用时看清文档

rgb_mean = np.array([0.485, 0.456, 0.406])
rgb_std = np.array([0.229, 0.224, 0.225])
def preprocess(PIL_img, image_shape):
    # 预处理函数
    process = torchvision.transforms.Compose([
        torchvision.transforms.Resize(image_shape),
        torchvision.transforms.ToTensor(),
        torchvision.transforms.Normalize(mean=rgb_mean, std=rgb_std)])
    return process(PIL_img).unsqueeze(dim = 0) # (batch_size, 3, H, W)
def postprocess(img_tensor):
    # 后处理函数
    inv_normalize = torchvision.transforms.Normalize(
        mean= -rgb_mean / rgb_std,
        std= 1/rgb_std)
    to_PIL_image = torchvision.transforms.ToPILImage()
    return to_PIL_image(inv_normalize(img_tensor[0].cpu()).clamp(0, 1))

4. 图像的抽取特征

我们使用基于ImageNet数据集预训练的VGG-19模型来抽取图像特征 。

PyTorch官方在torchvision.models模块提供了一些常见的预训练好的计算机视觉模型,包括图片分类、语义分割、目标检测、实例分割、人关键点检测和视频分类等等。使用时要仔细阅读其文档,搞清楚如何使用,例如刚刚提到的对图片进行标准化等。

pretrained_net = torchvision.models.vgg19(pretrained=True, progress=True)
# 如果已经下载好了模型,则可以用下面方式加载模型参数
# vgg19 = torchvision.models.vgg19(pretrained=False)   #创建一个vgg19模型框架
# vgg19.load_state_dict(torch.load("vgg19_method2.pth"))  #对模型参数进行拷贝

第一次执行上述代码会把预训练好的模型参数下载到环境变量TORCH_HOME指定的位置,如果没有该环境变量的话默认位置是.cache/torch

为了抽取图像的内容特征和样式特征,我们可以选择VGG网络中某些层的输出。一般来说,越靠近输入层的输出越容易抽取图像的细节信息,反之则越容易抽取图像的全局信息。为了避免合成图像过多保留内容图像的细节,我们选择VGG较靠近输出的层,也称内容层,来输出图像的内容特征。我们还从VGG中选择不同层的输出来匹配局部和全局的样式,这些层也叫样式层。之前介绍过,VGG网络使用了5个卷积块。实验中,我们选择第四卷积块的最后一个卷积层作为内容层,以及每个卷积块的第一个卷积层作为样式层。这些层的索引可以通过打印pretrained_net实例来获取。

pretrained_net

输出:

VGG(
  (features): Sequential(
    (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU(inplace)
    (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (3): ReLU(inplace)
    (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (6): ReLU(inplace)
    (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (8): ReLU(inplace)
    (9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (11): ReLU(inplace)
    (12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (13): ReLU(inplace)
    (14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (15): ReLU(inplace)
    (16): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (17): ReLU(inplace)
    (18): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (19): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (20): ReLU(inplace)
    (21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (22): ReLU(inplace)
    (23): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (24): ReLU(inplace)
    (25): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (26): ReLU(inplace)
    (27): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (29): ReLU(inplace)
    (30): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (31): ReLU(inplace)
    (32): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (33): ReLU(inplace)
    (34): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (35): ReLU(inplace)
    (36): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (avgpool): AdaptiveAvgPool2d(output_size=(7, 7))
  (classifier): Sequential(
    (0): Linear(in_features=25088, out_features=4096, bias=True)
    (1): ReLU(inplace)
    (2): Dropout(p=0.5)
    (3): Linear(in_features=4096, out_features=4096, bias=True)
    (4): ReLU(inplace)
    (5): Dropout(p=0.5)
    (6): Linear(in_features=4096, out_features=1000, bias=True)
  )
)
style_layers, content_layers = [0, 5, 10, 19, 28], [25]

在抽取特征时,我们只需要用到VGG从输入层到最靠近输出层的内容层或样式层之间的所有层。下面构建一个新的网络net,它只保留需要用到的VGG的所有层。我们将使用net来抽取特征。

net_list = []
for i in range(max(content_layers + style_layers) + 1):
    # 0-28层
    net_list.append(pretrained_net.features[i])
net = torch.nn.Sequential(*net_list)

给定输入X,如果简单调用前向计算net(X),只能获得最后一层的输出。由于我们还需要中间层的输出,因此这里我们逐层计算,并保留内容层和样式层的输出。

def extract_features(X, content_layers, style_layers):
    # X为输入的图像
    contents = []
    styles = []
    for i in range(len(net)):
        X = net[i](X)
        if i in style_layers:
            styles.append(X)
        if i in content_layers:
            contents.append(X)
    return contents, styles

下面定义两个函数,其中get_contents函数对内容图像抽取内容特征,而get_styles函数则对样式图像抽取样式特征。因为在训练时无须改变预训练的VGG的模型参数,所以我们可以在训练开始之前就提取出内容图像的内容特征,以及样式图像的样式特征。由于合成图像是样式迁移所需迭代的模型参数,我们只能在训练过程中通过调用extract_features函数来抽取合成图像的内容特征和样式特征。

def get_contents(image_shape, device):
    content_X = preprocess(content_img, image_shape).to(device)
    contents_Y, _ = extract_features(content_X, content_layers, style_layers)
    # contents_Y为提取出的内容图像的内容特征
    return content_X, contents_Y
def get_styles(image_shape, device):
    style_X = preprocess(style_img, image_shape).to(device)
    _, styles_Y = extract_features(style_X, content_layers, style_layers)
    # styles_Y为提取出的样式图像的样式特征
    return style_X, styles_Y

#5. 定义损失函数

下面我们来描述样式迁移的损失函数。它由内容损失、样式损失和总变差损失3部分组成。

5.1 内容损失

内容损失通过平方误差函数衡量合成图像与内容图像在内容特征上的差异。平方误差函数的两个输入均为extract_features函数计算所得到的内容层的输出。

def content_loss(Y_hat, Y):
    return F.mse_loss(Y_hat, Y)

5.2 样式损失

样式损失也一样通过平方误差函数衡量合成图像与样式图像在样式上的差异。为了表达样式层输出的样式,我们先通过extract_features函数计算样式层的输出。假设该输出的样本数为1,通道数为c,高和宽分别为h hhw,我们可以把输出变换成chw列的矩阵X。矩阵X可以看作是由c个长度为hw的向量x1,,xc组成的。其中向量xi代表了通道i ii上的样式特征。这些向量的格拉姆矩阵XRc×cij列的元素xij即向量xj的内积,它表达了通道i ii和通道j jj上样式特征的相关性。我们用这样的格拉姆矩阵表达样式层输出的样式。需要注意的是,当hw的值较大时,格拉姆矩阵中的元素容易出现较大的值。此外,格拉姆矩阵的高和宽皆为通道数c。为了让样式损失不受这些值的大小影响,下面定义的gram函数将格拉姆矩阵除以了矩阵中元素的个数,即chw

def gram(X):
    num_channels, n = X.shape[1], X.shape[2] * X.shape[3]
    X = X.view(num_channels, n)
    return torch.matmul(X, X.t()) / (num_channels * n)

自然地,样式损失的平方误差函数的两个格拉姆矩阵输入分别基于合成图像与样式图像的样式层输出。这里假设基于样式图像的格拉姆矩阵gram_Y已经预先计算好了。

def style_loss(Y_hat, gram_Y):
    return F.mse_loss(gram(Y_hat), gram_Y)

5.3 总变差损失

有时候,我们学到的合成图像里面有大量高频噪点,即有特别亮或者特别暗的颗粒像素。一种常用的降噪方法是总变差降噪(total variation denoising)。假设xi,j表示坐标为(i,j)的像素值,降低总变差损失


image.png

能够尽可能使邻近的像素值相似。

def tv_loss(Y_hat):
    return 0.5 * (F.l1_loss(Y_hat[:, :, 1:, :], Y_hat[:, :, :-1, :]) + 
                  F.l1_loss(Y_hat[:, :, :, 1:], Y_hat[:, :, :, :-1]))

5.4 损失函数

样式迁移的损失函数即内容损失、样式损失和总变差损失的加权和。通过调节这些权值超参数,我们可以权衡合成图像在保留内容、迁移样式以及降噪三方面的相对重要性。

content_weight, style_weight, tv_weight = 1, 1e3, 10
def compute_loss(X, contents_Y_hat, styles_Y_hat, contents_Y, styles_Y_gram):
    # 分别计算内容损失、样式损失和总变差损失
    contents_l = [content_loss(Y_hat, Y) * content_weight for Y_hat, Y in zip(
        contents_Y_hat, contents_Y)]
    styles_l = [style_loss(Y_hat, Y) * style_weight for Y_hat, Y in zip(
        styles_Y_hat, styles_Y_gram)]
    tv_l = tv_loss(X) * tv_weight
    # 对所有损失求和
    l = sum(styles_l) + sum(contents_l) + tv_l
    return contents_l, styles_l, tv_l, l

6. 创建和初始化合成图像

在样式迁移中,合成图像是唯一需要更新的变量。因此,我们可以定义一个简单的模型GeneratedImage,并将合成图像视为模型参数。模型的前向计算只需返回模型参数即可。

class GeneratedImage(torch.nn.Module):
    def __init__(self, img_shape):
        super(GeneratedImage, self).__init__()
        self.weight = torch.nn.Parameter(torch.rand(*img_shape))
    def forward(self):
        return self.weight

下面,我们定义get_inits函数。该函数创建了合成图像的模型实例,并将其初始化为图像X。样式图像在各个样式层的格拉姆矩阵styles_Y_gram将在训练前预先计算好。

def get_inits(X, device, lr, styles_Y):
    gen_img = GeneratedImage(X.shape).to(device)
    gen_img.weight.data = X.data
    optimizer = torch.optim.Adam(gen_img.parameters(), lr=lr)
    styles_Y_gram = [gram(Y) for Y in styles_Y]
    return gen_img(), styles_Y_gram, optimizer

7. 训练模型并输出合成图像

在训练模型时,我们不断抽取合成图像的内容特征和样式特征,并计算损失函数。

def train(X, contents_Y, styles_Y, device, lr, max_epochs, lr_decay_epoch):
    print("training on ", device)
    X, styles_Y_gram, optimizer = get_inits(X, device, lr, styles_Y)
    scheduler = torch.optim.lr_scheduler.StepLR(optimizer, lr_decay_epoch, gamma=0.1)
    for i in range(max_epochs):
        start = time.time()
        
        contents_Y_hat, styles_Y_hat = extract_features(
                X, content_layers, style_layers)
        contents_l, styles_l, tv_l, l = compute_loss(
                X, contents_Y_hat, styles_Y_hat, contents_Y, styles_Y_gram)
        
        optimizer.zero_grad()
        l.backward(retain_graph = True)
        optimizer.step()
        scheduler.step()
        
        if i % 50 == 0 and i != 0:
            print('epoch %3d, content loss %.2f, style loss %.2f, '
                  'TV loss %.2f, %.2f sec'
                  % (i, sum(contents_l).item(), sum(styles_l).item(), tv_l.item(),
                     time.time() - start))
    return X.detach()

下面我们开始训练模型。首先将内容图像和样式图像的高和宽分别调整为150和225像素。合成图像将由内容图像来初始化。

image_shape =  (150, 225)
net = net.to(device)
content_X, contents_Y = get_contents(image_shape, device)
style_X, styles_Y = get_styles(image_shape, device)
output = train(content_X, contents_Y, styles_Y, device, 0.01, 500, 200)

输出:

training on  cpu
epoch  50, content loss 0.24, style loss 1.11, TV loss 1.33, 1.72 sec
epoch 100, content loss 0.24, style loss 0.81, TV loss 1.20, 1.54 sec
epoch 150, content loss 0.24, style loss 0.73, TV loss 1.12, 1.56 sec
epoch 200, content loss 0.24, style loss 0.68, TV loss 1.06, 1.50 sec
epoch 250, content loss 0.24, style loss 0.68, TV loss 1.05, 1.90 sec
epoch 300, content loss 0.24, style loss 0.67, TV loss 1.04, 1.60 sec
epoch 350, content loss 0.24, style loss 0.67, TV loss 1.04, 1.57 sec
epoch 400, content loss 0.24, style loss 0.67, TV loss 1.03, 1.62 sec
epoch 450, content loss 0.24, style loss 0.67, TV loss 1.03, 1.40 sec

下面我们查看一下训练好的合成图像。可以看到下图中的合成图像保留了内容图像的风景和物体,并同时迁移了样式图像的色彩。因为图像尺寸较小,所以细节上依然比较模糊。

d2l.plt.imshow(postprocess(output));

为了得到更加清晰的合成图像,下面我们在更大的300 × 450 300 \times 450300×450尺寸上训练。我们将图片的高和宽放大2倍,以初始化更大尺寸的合成图像。

image_shape = (300, 450)
_, content_Y = get_contents(image_shape, device)
_, style_Y = get_styles(image_shape, device)
X = preprocess(postprocess(output), image_shape).to(device)
big_output = train(X, content_Y, style_Y, device, 0.01, 500, 200)

输出:

training on  cpu
epoch  50, content loss 0.34, style loss 0.62, TV loss 0.79, 5.00 sec
epoch 100, content loss 0.31, style loss 0.50, TV loss 0.74, 5.39 sec
epoch 150, content loss 0.29, style loss 0.45, TV loss 0.72, 4.91 sec
epoch 200, content loss 0.28, style loss 0.43, TV loss 0.70, 4.99 sec
epoch 250, content loss 0.28, style loss 0.42, TV loss 0.69, 5.59 sec
epoch 300, content loss 0.28, style loss 0.42, TV loss 0.69, 4.96 sec
epoch 350, content loss 0.28, style loss 0.42, TV loss 0.69, 4.42 sec
epoch 400, content loss 0.28, style loss 0.42, TV loss 0.69, 5.81 sec
epoch 450, content loss 0.28, style loss 0.42, TV loss 0.69, 5.10 sec

可以看到,由于图像尺寸更大,每一次迭代需要花费更多的时间。下面我们查看一下训练好的合成图像。

d2l.set_figsize((7, 5))
d2l.plt.imshow(postprocess(big_output));

从训练得到的图中可以看到,此时的合成图像因为尺寸更大,所以保留了更多的细节。合成图像里面不仅有大块的类似样式图像的油画色彩块,色彩块中甚至出现了细微的纹理。

总结

  • 样式迁移常用的损失函数由3部分组成:内容损失使合成图像与内容图像在内容特征上接近,样式损失令合成图像与样式图像在样式特征上接近,而总变差损失则有助于减少合成图像中的噪点。
  • 可以通过预训练的卷积神经网络来抽取图像的特征,并通过最小化损失函数来不断更新合成图像。
  • 用格拉姆矩阵表达样式层输出的样式。
相关文章
|
2月前
|
机器学习/深度学习 数据采集 人工智能
AI赋能教育:深度学习在个性化学习系统中的应用
【10月更文挑战第26天】随着人工智能的发展,深度学习技术正逐步应用于教育领域,特别是个性化学习系统中。通过分析学生的学习数据,深度学习模型能够精准预测学生的学习表现,并为其推荐合适的学习资源和规划学习路径,从而提供更加高效、有趣和个性化的学习体验。
203 9
|
2月前
|
机器学习/深度学习 人工智能 TensorFlow
基于TensorFlow的深度学习模型训练与优化实战
基于TensorFlow的深度学习模型训练与优化实战
125 0
|
3月前
|
机器学习/深度学习 存储 自然语言处理
深度学习之少样本学习
少样本学习(Few-Shot Learning, FSL)是深度学习中的一个重要研究领域,其目标是在只有少量标注样本的情况下,训练出能够很好地泛化到新类别或新任务的模型。
65 2
|
3月前
|
机器学习/深度学习 自然语言处理 计算机视觉
深度学习中的迁移学习技术
【10月更文挑战第11天】 本文探讨了深度学习中的迁移学习技术,并深入分析了其原理、应用场景及实现方法。通过实例解析,展示了迁移学习如何有效提升模型性能和开发效率。同时,文章也讨论了迁移学习面临的挑战及其未来发展方向。
|
3月前
|
机器学习/深度学习 人工智能 算法
揭开深度学习与传统机器学习的神秘面纱:从理论差异到实战代码详解两者间的选择与应用策略全面解析
【10月更文挑战第10天】本文探讨了深度学习与传统机器学习的区别,通过图像识别和语音处理等领域的应用案例,展示了深度学习在自动特征学习和处理大规模数据方面的优势。文中还提供了一个Python代码示例,使用TensorFlow构建多层感知器(MLP)并与Scikit-learn中的逻辑回归模型进行对比,进一步说明了两者的不同特点。
123 2
|
2月前
|
安全 搜索推荐 机器学习/深度学习
AI赋能教育:深度学习在个性化学习系统中的应用
【10月更文挑战第26天】在人工智能的推动下,个性化学习系统逐渐成为教育领域的重要趋势。深度学习作为AI的核心技术,在构建个性化学习系统中发挥关键作用。本文探讨了深度学习在个性化推荐系统、智能辅导系统和学习行为分析中的应用,并提供了代码示例,展示了如何使用Keras构建模型预测学生对课程的兴趣。尽管面临数据隐私和模型可解释性等挑战,深度学习仍有望为教育带来更个性化和高效的学习体验。
195 0
|
1月前
|
机器学习/深度学习 传感器 数据采集
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
154 6
|
25天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习的原理与应用:开启智能时代的大门
深度学习的原理与应用:开启智能时代的大门
131 16
|
1月前
|
机器学习/深度学习 网络架构 计算机视觉
深度学习在图像识别中的应用与挑战
【10月更文挑战第21天】 本文探讨了深度学习技术在图像识别领域的应用,并分析了当前面临的主要挑战。通过研究卷积神经网络(CNN)的结构和原理,本文展示了深度学习如何提高图像识别的准确性和效率。同时,本文也讨论了数据不平衡、过拟合、计算资源限制等问题,并提出了相应的解决策略。
99 19
|
1月前
|
机器学习/深度学习 传感器 人工智能
探索深度学习在图像识别中的应用与挑战
【10月更文挑战第21天】 本文深入探讨了深度学习技术在图像识别领域的应用,并分析了当前面临的主要挑战。通过介绍卷积神经网络(CNN)的基本原理和架构设计,阐述了深度学习如何有效地从图像数据中提取特征,并在多个领域实现突破性进展。同时,文章也指出了训练深度模型时常见的过拟合问题、数据不平衡以及计算资源需求高等挑战,并提出了相应的解决策略。
92 7