实时计算 Flink版操作报错合集之遇到报错:Apache Kafka Connect错误如何解决

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。

问题一:flinkcdc同步的时候有什么策略可以设置跳过哪些报错吗?假如报唯一性的错 这种就想让他过?


flinkcdc同步的时候有什么策略可以设置跳过哪些报错吗?假如报唯一性的错 这种就想让他过?


参考回答:

报错需要拍错,是有问题的,应该是下游引起的。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/572250


问题二:Flink CDC2.4.2同步MySQL,报了空指针,但是不知道报错的地方在哪里?


Flink CDC2.4.2同步MySQL,报了空指针,但是不知道报错的地方在哪里?org.apache.flink.util.FlinkException: Global failure triggered by OperatorCoordinator for 'Source: MySQL Source' (operator bc764cd8ddf7a0cff126f51c16239658).

at org.apache.flink.runtime.operators.coordination.OperatorCoordinatorHolder$LazyInitializedCoordinatorContext.failJob(OperatorCoordinatorHolder.java:617)

at org.apache.flink.runtime.operators.coordination.RecreateOnResetOperatorCoordinator$QuiesceableContext.failJob(RecreateOnResetOperatorCoordinator.java:237)

at org.apache.flink.runtime.source.coordinator.SourceCoordinatorContext.failJob(SourceCoordinatorContext.java:374)

at org.apache.flink.runtime.source.coordinator.SourceCoordinator.lambda$runInEventLoop$10(SourceCoordinator.java:472)

at org.apache.flink.util.ThrowableCatchingRunnable.run(ThrowableCatchingRunnable.java:40)

at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)

at java.util.concurrent.FutureTask.run(FutureTask.java:266)

at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$201(ScheduledThreadPoolExecutor.java:180)

at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:293)

at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)

at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)

at java.lang.Thread.run(Thread.java:750)

Caused by: java.lang.NullPointerException


参考回答:

从您的错误信息可以看出,您遇到了空指针异常,这通常是由于源代码中使用了未经初始化的对象或变量导致的。您可以在代码中找出错误的地方,然后修复它。

您可以尝试以下方法:

  1. 检查您使用的代码,看看是否存在空对象引用或空指针异常。
  2. 检查连接MySQL数据库的参数是否正确。
  3. 检查MySQL数据库的连接是否正常。
  4. 检查代码中是否存在可能导致异常的部分,例如数组越界或空集合访问。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/572249


问题三:Flink CDC 想问下大家 ,有没有遇到过, 是怎么处理的这个问题的?


Flink CDC 1.13.3 oracle-cdc2.2 数据库Oracle19c遇到的问题 : CPU 使用率非常高 ,见下图经过排查发现: 下面的SQL查询频率非常高 ,每分钟上千次 (任务越多,使用的表越多,越频繁。)SELECT SCN, SQL_REDO, OPERATION_CODE, TIMESTAMP, XID, CSF, TABLE_NAME, SEG_OWNER, OPERATION, USERNAME, ROW_ID, ROLLBACK FROM V$LOGMNR_CONTENTS WHERE SCN > :1 AND SCN <= :2 AND ((OPERATION_CODE IN (5, 34) AND USERNAME NOT IN ('SYS', 'SYSTEM', 'PPS_EDW')) OR (OPERATION_CODE IN (7, 36)) OR (OPERATION_CODE IN (1, 2, 3) AND TABLE_NAME != 'LOG_MINING_FLUSH' AND SEG_OWNER NOT IN ('APPQOSSYS', 'AUDSYS', 'CTXSYS', 'DVSYS', 'DBSFWUSER', 'DBSNMP', 'GSMADMIN_INTERNAL', 'LBACSYS', 'MDSYS', 'OJVMSYS', 'OLAPSYS', 'ORDDATA', 'ORDSYS', 'OUTLN', 'SYS', 'SYSTEM', 'WMSYS', 'XDB') AND (REGEXP_LIKE(SEG_OWNER, '^T1_CCBSCF$', 'i')) AND (REGEXP_LIKE(SEG_OWNER || '.' || TABLE_NAME, '^T1_CCBSCF.T_CI_PARTNER$', 'i')) ))想问下大家 ,有没有遇到过, 是怎么处理的这个问题的, 感谢~


参考回答:

在Flink CDC中,如果SQL查询频率过高,可能会导致CPU使用率过高。以下是一些可能的解决方案:

  1. 优化SQL查询:您可以尝试优化您的SQL查询,以减少查询的频率。例如,您可以尝试使用索引,或者使用更复杂的查询条件来减少查询的范围。
  2. 使用更高效的查询引擎:您可以尝试使用更高效的查询引擎,例如InnoDB或XLog。这些查询引擎通常比MyISAM查询引擎更高效,可以减少查询的频率。
  3. 使用更高效的表:您可以尝试使用更高效的表,例如InnoDB或XLog。这些表通常比MyISAM表更高效,可以减少查询的频率。
  4. 使用更高效的存储引擎:您可以尝试使用更高效的存储引擎,例如InnoDB或XLog。这些存储引擎通常比MyISAM存储引擎更高效,可以减少查询的频率。
  5. 使用更高效的索引:您可以尝试使用更高效的索引,例如InnoDB或XLog。这些索引通常比MyISAM索引更高效,可以减少查询的频率。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/572248


问题四:Flink CDC这个错误有遇到过吗 ?


Flink CDC这个错误有遇到过吗 ?Caused by: org.apache.kafka.connect.errors.ConnectException: Data row is smaller than a column index, internal schema representation is probably out of sync with real database schema


参考回答:

数据库结构变更过了吗,确认一下表结构,再重跑下试试


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/572247


问题五:Flink CDC一直在报流式未启用的错误,但是错误级别又是info的,请问这个重要么?


Flink CDC一直在报流式未启用的错误,但是错误级别又是info的,请问这个重要么?2023-11-15 08:09:22,798 INFO io.debezium.connector.sqlserver.SqlServerStreamingChangeEventSource [] - Streaming is not enabled in current configuration

2023-11-15 08:09:23,298 INFO io.debezium.connector.sqlserver.SqlServerStreamingChangeEventSource [] - Streaming is not enabled in current configuration


参考回答:

看起来和执行模式有关系,你是只同步全量数据吧


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/572246

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
目录
相关文章
|
1月前
|
存储 人工智能 大数据
The Past, Present and Future of Apache Flink
本文整理自阿里云开源大数据负责人王峰(莫问)在 Flink Forward Asia 2024 上海站主论坛开场的分享,今年正值 Flink 开源项目诞生的第 10 周年,借此时机,王峰回顾了 Flink 在过去 10 年的发展历程以及 Flink社区当前最新的技术成果,最后展望下一个十年 Flink 路向何方。
341 33
The Past, Present and Future of Apache Flink
|
2月前
|
消息中间件 安全 Kafka
Apache Kafka安全加固指南:保护你的消息传递系统
【10月更文挑战第24天】在现代企业环境中,数据的安全性和隐私保护至关重要。Apache Kafka作为一款广泛使用的分布式流处理平台,其安全性直接影响着业务的稳定性和用户数据的安全。作为一名资深的Kafka使用者,我深知加强Kafka安全性的重要性。本文将从个人角度出发,分享我在实践中积累的经验,帮助读者了解如何有效地保护Kafka消息传递系统的安全性。
148 7
|
2月前
|
消息中间件 数据挖掘 Kafka
Apache Kafka流处理实战:构建实时数据分析应用
【10月更文挑战第24天】在当今这个数据爆炸的时代,能够快速准确地处理实时数据变得尤为重要。无论是金融交易监控、网络行为分析还是物联网设备的数据收集,实时数据处理技术都是不可或缺的一部分。Apache Kafka作为一款高性能的消息队列系统,不仅支持传统的消息传递模式,还提供了强大的流处理能力,能够帮助开发者构建高效、可扩展的实时数据分析应用。
111 5
|
2月前
|
消息中间件 存储 监控
构建高可用性Apache Kafka集群:从理论到实践
【10月更文挑战第24天】随着大数据时代的到来,数据传输与处理的需求日益增长。Apache Kafka作为一个高性能的消息队列服务,因其出色的吞吐量、可扩展性和容错能力而受到广泛欢迎。然而,在构建大规模生产环境下的Kafka集群时,保证其高可用性是至关重要的。本文将从个人实践经验出发,详细介绍如何构建一个高可用性的Kafka集群,包括集群规划、节点配置以及故障恢复机制等方面。
124 4
|
2月前
|
消息中间件 监控 大数据
优化Apache Kafka性能:最佳实践与调优策略
【10月更文挑战第24天】作为一名已经对Apache Kafka有所了解并有实际使用经验的开发者,我深知在大数据处理和实时数据流传输中,Kafka的重要性不言而喻。然而,在面对日益增长的数据量和业务需求时,如何保证系统的高性能和稳定性成为了摆在我们面前的一个挑战。本文将从我的个人视角出发,分享一些关于如何通过合理的配置和调优来提高Kafka性能的经验和建议。
110 4
|
2月前
|
消息中间件 Java Kafka
什么是Apache Kafka?如何将其与Spring Boot集成?
什么是Apache Kafka?如何将其与Spring Boot集成?
89 5
|
2月前
|
消息中间件 Java Kafka
Spring Boot 与 Apache Kafka 集成详解:构建高效消息驱动应用
Spring Boot 与 Apache Kafka 集成详解:构建高效消息驱动应用
71 1
|
2月前
|
消息中间件 Java Kafka
初识Apache Kafka:搭建你的第一个消息队列系统
【10月更文挑战第24天】在数字化转型的浪潮中,数据成为了企业决策的关键因素之一。而高效的数据处理能力,则成为了企业在竞争中脱颖而出的重要武器。在这个背景下,消息队列作为连接不同系统和服务的桥梁,其重要性日益凸显。Apache Kafka 是一款开源的消息队列系统,以其高吞吐量、可扩展性和持久性等特点受到了广泛欢迎。作为一名技术爱好者,我对 Apache Kafka 产生了浓厚的兴趣,并决定亲手搭建一套属于自己的消息队列系统。
93 2
初识Apache Kafka:搭建你的第一个消息队列系统
|
2月前
|
消息中间件 存储 负载均衡
Apache Kafka核心概念解析:生产者、消费者与Broker
【10月更文挑战第24天】在数字化转型的大潮中,数据的实时处理能力成为了企业竞争力的重要组成部分。Apache Kafka 作为一款高性能的消息队列系统,在这一领域占据了重要地位。通过使用 Kafka,企业可以构建出高效的数据管道,实现数据的快速传输和处理。今天,我将从个人的角度出发,深入解析 Kafka 的三大核心组件——生产者、消费者与 Broker,希望能够帮助大家建立起对 Kafka 内部机制的基本理解。
110 2
|
2月前
|
消息中间件 Ubuntu Java
Ubuntu系统上安装Apache Kafka
Ubuntu系统上安装Apache Kafka

相关产品

  • 实时计算 Flink版
  • 推荐镜像

    更多