Python深度学习基于Tensorflow(1)Numpy基础

简介: Python深度学习基于Tensorflow(1)Numpy基础

numpy的重要性不言而喻,一般不涉及到GPU/TPU计算,都是用numpy,常见的np就是这个玩意。其特点就是快!其实如果不涉及到深度学习,还有一个库是很重要的,scipy,集成了很多的东西。

安装和导入如下:

# pip 安装方式
pip install numpy
# conda 安装方式
conda install numpy
# 导入
import numpy as np

numpy对象一般有三个属性:ndarray.ndim、ndarray.shape、ndarray.dtype。分别表示数据维度,数据形状,数据类型

数据转换和数据生成

将已有数据转化为numpy类型很简单,一般来说直接numpy.array一下就好

lst = [0.30406244, 0.06466714, 0.44950621]  
array = np.array(lst)

这里无论是字符串什么东西的都可以直接丢进去,这里提一下读取图片文件,需要涉及到其他的库,常见的有PIL、OpenCV

# PIL
from PIL import Image
import numpy as np
im = np.array(Image.open('图片路径'))
# OpenCV
import cv2
im = cv2.imread('图片路径')

这两种方式都可以读取图片文件,cv2可以直接的转化为numpy类型数据

然后就是数据生成,分为随机生成和有序生成,分为random模块以及arange、linspace模块

这里先介绍一下random

# 设置随机种子
np.random.seed(42)
# 生成矩阵形状为4*4,值在0-1之间的随机数
np.random.random(size=(4,4))
# 生成矩阵形状为4*4,值在low和high之间的随机整数
np.random.randint(low=0, high=1, size=(4,4))
# 生成矩阵形状为4*4,值在low和high之间满足均匀分布的随机数
np.random.uniform(low=0, high=1, size=(4,4))
# 生成矩阵形状为4*4,值在low和high之间满足正态分布的随机数
np.random.normal(loc=0, scale=1, size=(4,4))

这里要注意:正态分布的loc表示的是 μ \mu μ , scale表示的是 σ \sigma σ

接下来是arange和linspace

np.arange(start, stop, step)
np.linspace(start, stop, num)

arange和linspace的区别就是step和num的区别,其中step是步长,num是数量,分别表示根据步长生成有序数据和数量生成有序数据。

存取数据

numpy和list一样,可以指定行和列来对数据进行切片,但是不同的是可以利用True和False来对数据进行筛选

mu, sigma = 0, 0.1
s = np.random.normal(mu, sigma, 1000)  
res = s[(s>0) & (s<1)]

这样可以提取在0-1范围上的所有数据,这里要注意的是,条件必须要带上括号

数据变形和合并

首先是数据形状的修改

arr = np.arange(10)
## reshape 修改np对象维度,不修改矩阵本身
arr = arr.reshape(2,5)
## resize 修改np对象维度,同时修改矩阵本身
arr.resize(2,5)
## T 转置
arr.T
## ravel 把np对象展平,变成一维 C表示行优先,F表示列优先
arr.ravel('C')
## flatten 把np对象展平,变成一维 C表示行优先,F表示列优先
arr.flatten(order="C")
## squeeze 对维数为1的维度进行降维,即清除掉维数为1的维度
arr.squeeze()
## 拓展维度
np.expand_dims(arr, axis=-1)
arr[:, np.newaxis]
## transpose 对高维矩阵进行轴对换
arr.transpose(1,2,0)

数据合并

lst = [1, 2, 3]
lst_ = [3, 4, 5]
## append 拼接数组,维度不能发生变化
res = np.append(lst,lst_)
## concatenate 拼接数组,维度不能发生变化,内存占用要比append低, 推荐使用
lst = np.array([1, 2, 3])  
lst_ = np.array([3, 4, 5])  
res = np.concatenate((lst, lst_), axis=0)
## stack hstack vstack dstack 堆叠数组
lst = np.array([1, 2, 3])  
lst_ = np.array([3, 4, 5])  
res = np.stack((lst, lst_), axis=1) # 对应dstack 沿着第三维
res = np.stack((lst, lst_), axis=0) # 对应vstack 沿着列堆叠
res = np.hstack((lst, lst_)) # 沿着行堆叠
算数计算

numpy的算术计算相比与math速度大大提升

sqrtsin,cosabsdotlog,log10,log2expcumsum, cumproductsummeanmedianstdvarcorrcoef

广播机制
  • 让所有输入数组都向其中shape最长的数组看起,shape中不足的部分都通过在前面加1补齐;
  • 输出数组的shape是输入数组shape的各个轴上的最大值;
  • 如果输入数组的某个轴和输出数组的对应轴的长度相同或者长度为1时,则可以调整,否则将会出错;
  • 当输入数组的某个轴长度为1时,沿着此轴运算时都用(或复制)此轴上的第一组值;
使用Numpy实现回归实例

假设目标函数如下:

y = 3 x 2 + 2 x + 1 y=3x^2+2x+1 y=3x2+2x+1

图像如下:

假设知道最高项为3,设函数为: y = a x 2 + b x + c y=ax^2+bx+c y=ax2+bx+c

import numpy as np  
import matplotlib.pyplot as plt  
  
np.random.seed(42)  
  
x = np.linspace(-10, 10, 50)  
y = 3 * np.power(x, 2) + 2 * x + 1  
  
a = np.random.random(size=(1, 1))  
b = np.random.random(size=(1, 1))  
c = np.random.random(size=(1, 1))  
  
  
def get_predict(x):  
    global a, b, c  
    res = (a * np.power(x, 2) + b * x + c).flatten()  
    return res  
  
  
def get_loss(y, y_pred):  
    return np.mean(np.square(y - y_pred))  
  
  
def grad_param(y, y_pred, lr=1e-4):  
    global a, b, c  
    a_grad = 2 * np.mean((y_pred - y) * np.power(x, 2))  
    b_grad = 2 * np.mean((y_pred - y) * np.power(x, 1))  
    c_grad = 2 * np.mean(y_pred - y)  
    a -= lr * a_grad  
    b -= lr * b_grad  
    b -= lr * c_grad  
    return None  
  
  
def train_one_peoch(x, y):  
    y_pred = get_predict(x)  
    loss = np.mean(get_loss(y, y_pred))  
    grad_param(y, y_pred)  
    return loss  
  
  
def main():  
    loss_lst = []  
    for i in range(100):  
        loss = train_one_peoch(x, y)  
        loss_lst.append(loss)  
        print("第", i + 1, "次", "训练loss:", loss)  
  
    plt.plot(loss_lst)  
    plt.show()  
  
  
if __name__ == "__main__":  
    main()

得到训练后的损失如下:


目录
相关文章
|
13天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
64 4
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
1月前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
285 55
|
1月前
|
机器学习/深度学习 数据可视化 TensorFlow
使用Python实现深度学习模型的分布式训练
使用Python实现深度学习模型的分布式训练
175 73
|
10天前
|
机器学习/深度学习 算法 前端开发
基于Python深度学习果蔬识别系统实现
本项目基于Python和TensorFlow,使用ResNet卷积神经网络模型,对12种常见果蔬(如土豆、苹果等)的图像数据集进行训练,构建了一个高精度的果蔬识别系统。系统通过Django框架搭建Web端可视化界面,用户可上传图片并自动识别果蔬种类。该项目旨在提高农业生产效率,广泛应用于食品安全、智能农业等领域。CNN凭借其强大的特征提取能力,在图像分类任务中表现出色,为实现高效的自动化果蔬识别提供了技术支持。
基于Python深度学习果蔬识别系统实现
|
1月前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费市场分析的深度学习模型
使用Python实现智能食品消费市场分析的深度学习模型
127 36
|
1月前
|
机器学习/深度学习 数据采集 供应链
使用Python实现智能食品消费需求分析的深度学习模型
使用Python实现智能食品消费需求分析的深度学习模型
84 21
|
1月前
|
机器学习/深度学习 数据采集 搜索推荐
使用Python实现智能食品消费偏好预测的深度学习模型
使用Python实现智能食品消费偏好预测的深度学习模型
84 23
|
1月前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费习惯预测的深度学习模型
使用Python实现智能食品消费习惯预测的深度学习模型
119 19
|
1月前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费趋势分析的深度学习模型
使用Python实现智能食品消费趋势分析的深度学习模型
126 18
|
1月前
|
机器学习/深度学习 数据采集 搜索推荐
使用Python实现深度学习模型:智能食品消费行为预测
使用Python实现深度学习模型:智能食品消费行为预测
81 8