深入浅出Python机器学习:从零开始的SVM教程/厾罗

简介: 深入浅出Python机器学习:从零开始的SVM教程/厾罗

导言:

在众多机器学习算法中,支持向量机(Support Vector Machine, SVM)以其强大的分类能力和理论背景受到了广泛的应用。SVM不仅在学术领域表现出色,而且在工业界也有着极高的声誉。本文将带领大家从零开始,一步步理解SVM的原理,并通过Python代码实现一个简单的SVM分类器。无论你是机器学习新手还是希望巩固知识的老手,本文都会对你有所帮助。



一、SVM基础概念

支持向量机是一种监督学习模型,它通过在特征空间中构建一个最优超平面来实现分类或回归任务。SVM的主要思想是将数据点最大化地分隔开来,使得两个类别之间的边界尽可能宽。这个边界被称为“最大间隔”,而位于间隔边缘的数据点被称为“支持向量”。



二、数学原理简介

在理解SVM之前,我们需要了解几个关键的数学概念:



1- **超平面(Hyperplane)**:在N维空间中,一个超平面可以将空间分为两个部分。


2- **间隔(Margin)**:两个类别之间的最短距离。


3- **支持向量(Support Vectors)**:距离超平面最近的、确定间隔的数据点。


4- **核函数(Kernel Function)**:用于将原始特征空间映射到更高维度的空间,以便找到可以分割数据的超平面。



三、Python实现SVM

我们将使用Python的scikit-learn库来实现SVM分类器。首先,我们需要导入必要的库和数据集。



from sklearn import datasets


from sklearn.model_selection import train_test_split


from sklearn.preprocessing import StandardScaler


from sklearn.svm import SVC


from sklearn.metrics import accuracy_score



# 加载鸢尾花数据集


iris = datasets.load_iris()


X = iris.data[:, [2, 3]]


y = iris.target



# 划分训练集和测试集


X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)



# 数据标准化


sc = StandardScaler()


sc.fit(X_train)


X_train_std = sc.transform(X_train)


X_test_std = sc.transform(X_test)



接下来,我们创建一个SVM分类器,并使用训练数据对其进行训练。



# 创建SVM分类器


svm = SVC(kernel='linear', C=1.0, random_state=42)



# 训练模型


svm.fit(X_train_std, y_train)



# 预测测试集


y_pred = svm.predict(X_test_std)



# 计算准确率


print('Accuracy: %.2f' % accuracy_score(y_test, y_pred))




四、结语

通过上述步骤,我们已经成功实现了一个简单的SVM分类器,并且对鸢尾花数据集进行了分类。在实际应用中,SVM的参数调整和核函数的选择都是非常重要的,它们直接影响到分类器的性能。希望本文能够帮助你入门SVM,并在实际项目中运用它解决复杂的问题。


相关文章
|
20天前
|
BI Python
SciPy 教程 之 Scipy 显著性检验 8
本教程介绍SciPy中显著性检验的应用,包括如何利用scipy.stats模块进行显著性检验,以判断样本与总体假设间的差异是否显著。通过示例代码展示了如何使用describe()函数获取数组的统计描述信息,如观测次数、最小最大值、均值、方差等。
25 1
|
21天前
|
Python
SciPy 教程 之 Scipy 显著性检验 6
显著性检验是统计学中用于判断样本与总体假设间是否存在显著差异的方法。SciPy的scipy.stats模块提供了执行显著性检验的工具,如T检验,用于比较两组数据的均值是否来自同一分布。通过ttest_ind()函数,可以获取两样本的t统计量和p值,进而判断差异是否显著。示例代码展示了如何使用该函数进行T检验并输出结果。
20 1
|
22天前
|
Python
SciPy 教程 之 Scipy 显著性检验 3
本教程介绍Scipy显著性检验,包括其基本概念、原理及应用。显著性检验用于判断样本与总体假设间的差异是否显著,是统计学中的重要工具。Scipy通过`scipy.stats`模块提供了相关功能,支持双边检验等方法。
24 1
|
25天前
|
机器学习/深度学习 Python
SciPy 教程 之 SciPy 插值 2
SciPy插值教程:介绍插值概念及其在数值分析中的应用,特别是在处理数据缺失时的插补和平滑数据集。SciPy的`scipy.interpolate`模块提供了强大的插值功能,如一维插值和样条插值。通过`UnivariateSpline()`函数,可以轻松实现单变量插值,示例代码展示了如何对非线性点进行插值计算。
25 3
|
23天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
67 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
26天前
|
机器学习/深度学习 数据处理 Python
SciPy 教程 之 SciPy 空间数据 7
本教程介绍了SciPy的空间数据处理功能,涵盖如何使用`scipy.spatial`模块进行点的位置判断、最近点计算等操作。还详细解释了距离矩阵的概念及其在生物信息学中的应用,以及汉明距离的定义和计算方法。示例代码展示了如何计算两个点之间的汉明距离。
30 1
|
22天前
|
Python
SciPy 教程 之 Scipy 显著性检验 5
显著性检验用于判断样本与总体假设间的差异是否由随机变异引起,或是假设与真实情况不符所致。SciPy通过scipy.stats模块提供显著性检验功能,P值用于衡量数据接近极端程度,与alpha值对比以决定统计显著性。
23 0
|
23天前
|
机器学习/深度学习 数据处理 Python
SciPy 教程 之 SciPy 插值 3
本教程介绍了SciPy中的插值方法,包括什么是插值及其在数据处理和机器学习中的应用。通过 `scipy.interpolate` 模块,特别是 `Rbf()` 函数,展示了如何实现径向基函数插值,以平滑数据集中的离散点。示例代码演示了如何使用 `Rbf()` 函数进行插值计算。
23 0
|
23天前
|
Python
SciPy 教程 之 Scipy 显著性检验 1
本教程介绍Scipy显著性检验,包括统计假设、零假设和备择假设等概念,以及如何使用scipy.stats模块进行显著性检验,以判断样本与总体假设间是否存在显著差异。
24 0
|
7月前
|
机器学习/深度学习 算法 数据挖掘
【Python机器学习】K-Means对文本聚类和半环形数据聚类实战(附源码和数据集)
【Python机器学习】K-Means对文本聚类和半环形数据聚类实战(附源码和数据集)
202 0