【AI 生成式】LLM 通常如何训练?

本文涉及的产品
NLP自然语言处理_高级版,每接口累计50万次
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_基础版,每接口每天50万次
简介: 【5月更文挑战第5天】【AI 生成式】LLM 通常如何训练?

image.png

LLM(Large Language Models)的训练方法

Large Language Models(LLM)是指大型语言模型,例如像GPT(Generative Pre-trained Transformer)这样的模型。这些模型通常在庞大的文本语料库上进行训练,以学习自然语言的语法、语义和逻辑。在工程实践中,LLM的训练通常包括预训练和微调两个阶段,这两个阶段分别有其独特的目的和方法。在下面的分析中,我们将详细探讨LLM的训练方法,包括预训练和微调的过程、技术细节以及相关应用。

预训练

预训练是LLM训练的第一阶段,也是最关键的阶段之一。在预训练阶段,LLM会在大规模文本语料库上进行无监督学习,从而获得对语言的深层理解和丰富的语言表示。预训练的过程通常包括以下几个步骤:

  1. 选择语料库: 预训练的第一步是选择适当规模和质量的文本语料库。通常选择的语料库包括网络文档、书籍、新闻文章、维基百科等大规模公开的文本数据集。

  2. 数据预处理: 在将语料库输入到LLM之前,需要进行数据预处理。这包括分词、标记化、句子划分等处理步骤,以便模型能够理解和处理文本数据。

  3. 模型训练: 选择了适当的语料库并进行了数据预处理后,就可以开始模型的训练了。预训练通常采用自监督学习的方式,即模型通过最大化自身的似然概率来学习语言表示。这通常使用Transformer等架构来实现,通过自回归任务(如语言模型)或自编码任务(如Masked Language Model)来训练模型。

  4. 模型调优: 在预训练的过程中,可能会进行一些超参数的调优和模型结构的优化,以提高模型的性能和效率。这可能涉及到学习率调整、模型大小调整、训练策略优化等方面。

微调

预训练完成后,模型可以进入微调阶段。微调是指将预训练好的模型在特定任务上进行有监督学习,以适应特定任务的需求。微调的过程通常包括以下几个步骤:

  1. 选择任务: 微调的第一步是选择适当的任务进行微调。这可以是文本分类、命名实体识别、文本生成等自然语言处理任务,也可以是其他领域的任务,如图像处理、语音识别等。

  2. 数据准备: 对于选定的任务,需要准备相应的标注数据集。这些数据集应该包括输入数据和对应的标签或目标,以便模型进行有监督学习。

  3. 微调模型: 在准备好数据集后,就可以开始微调模型了。微调过程通常使用反向传播算法和梯度下降优化器来调整模型参数,以最小化在特定任务上的损失函数。

  4. 评估和调优: 微调完成后,需要对微调后的模型进行评估和调优。这通常涉及到使用验证集或交叉验证来评估模型在新数据上的性能,并根据评估结果进行参数调整和模型优化。

应用

LLM经过预训练和微调后,可以在各种自然语言处理任务中发挥作用。它可以用于语言生成、文本分类、机器翻译、问答系统等各种应用领域。通过在预训练和微调阶段的训练,LLM可以获得丰富的语言知识和表示能力,从而在各种任务中取得良好的性能。

总结

综上所述,LLM的训练通常包括预训练和微调两个阶段。预训练阶段通过无监督学习从大规模文本语料库中学习语言表示,微调阶段通过有监督学习在特定任务上进行调优。通过这两个阶段的训练,LLM可以获得丰富的语言知识和表示能力,并在各种自然语言处理任务中取得良好的性能。

相关文章
|
1月前
|
JSON 人工智能 数据格式
AI计算机视觉笔记二十六:YOLOV8自训练关键点检测
本文档详细记录了使用YOLOv8训练关键点检测模型的过程。首先通过清华源安装YOLOv8,并验证安装。接着通过示例权重文件与测试图片`bus.jpg`演示预测流程。为准备训练数据,文档介绍了如何使用`labelme`标注工具进行关键点标注,并提供了一个Python脚本`labelme2yolo.py`将标注结果从JSON格式转换为YOLO所需的TXT格式。随后,通过Jupyter Notebook可视化标注结果确保准确性。最后,文档展示了如何组织数据集目录结构,并提供了训练与测试代码示例,包括配置文件`smoke.yaml`及训练脚本`train.py`,帮助读者完成自定义模型的训练与评估。
|
2月前
|
人工智能 自然语言处理
FBI-LLM低比特基础大语言模型来了,首个完全从头训练的二值化语言模型
【8月更文挑战第22天】《FBI-LLM:通过自回归蒸馏从头开始扩展全二值化大语言模型》由Ma等学者发布于arXiv。该研究呈现了首个完全从头训练的全二值化大语言模型FBI-LLM,在不牺牲性能的前提下大幅降低计算资源需求。通过自回归蒸馏技术,FBI-LLM在多种任务上展现出与高精度模型相当的表现,为二值化模型的发展开辟新路径,并有望推动专用硬件的进步。研究者公开了所有相关资源以促进领域内的进一步探索。
48 10
|
7天前
|
Python 机器学习/深度学习 人工智能
手把手教你从零开始构建并训练你的第一个强化学习智能体:深入浅出Agent项目实战,带你体验编程与AI结合的乐趣
【10月更文挑战第1天】本文通过构建一个简单的强化学习环境,演示了如何创建和训练智能体以完成特定任务。我们使用Python、OpenAI Gym和PyTorch搭建了一个基础的智能体,使其学会在CartPole-v1环境中保持杆子不倒。文中详细介绍了环境设置、神经网络构建及训练过程。此实战案例有助于理解智能体的工作原理及基本训练方法,为更复杂应用奠定基础。首先需安装必要库: ```bash pip install gym torch ``` 接着定义环境并与之交互,实现智能体的训练。通过多个回合的试错学习,智能体逐步优化其策略。这一过程虽从基础做起,但为后续研究提供了良好起点。
30 4
手把手教你从零开始构建并训练你的第一个强化学习智能体:深入浅出Agent项目实战,带你体验编程与AI结合的乐趣
|
7天前
|
机器学习/深度学习 人工智能 自然语言处理
【AI大模型】LLM主流开源大模型介绍
【AI大模型】LLM主流开源大模型介绍
|
7天前
|
机器学习/深度学习 人工智能 自然语言处理
【AI大模型】BERT模型:揭秘LLM主要类别架构(上)
【AI大模型】BERT模型:揭秘LLM主要类别架构(上)
|
2月前
|
存储 人工智能 自然语言处理
无缝融入,即刻智能[二]:Dify-LLM平台(聊天智能助手、AI工作流)快速使用指南,42K+星标见证专属智能方案
【8月更文挑战第8天】无缝融入,即刻智能[二]:Dify-LLM平台(聊天智能助手、AI工作流)快速使用指南,42K+星标见证专属智能方案
无缝融入,即刻智能[二]:Dify-LLM平台(聊天智能助手、AI工作流)快速使用指南,42K+星标见证专属智能方案
|
1月前
|
人工智能 开发工具 计算机视觉
AI计算机视觉笔记三十:yolov8_obb旋转框训练
本文介绍了如何使用AUTODL环境搭建YOLOv8-obb的训练流程。首先创建虚拟环境并激活,然后通过指定清华源安装ultralytics库。接着下载YOLOv8源码,并使用指定命令开始训练,过程中可能会下载yolov8n.pt文件。训练完成后,可使用相应命令进行预测测试。
|
1月前
|
人工智能 PyTorch 算法框架/工具
AI计算机视觉笔记二十二:基于 LeNet5 的手写数字识别及训练
本文介绍了使用PyTorch复现LeNet5模型并检测手写数字的过程。通过搭建PyTorch环境、安装相关库和下载MNIST数据集,实现了模型训练与测试。训练过程涉及创建虚拟环境、安装PyTorch及依赖库、准备数据集,并编写训练代码。最终模型在测试集上的准确率达到0.986,满足预期要求。此项目为后续在RK3568平台上部署模型奠定了基础。
|
2月前
|
人工智能 PyTorch 算法框架/工具
Xinference实战指南:全面解析LLM大模型部署流程,携手Dify打造高效AI应用实践案例,加速AI项目落地进程
【8月更文挑战第6天】Xinference实战指南:全面解析LLM大模型部署流程,携手Dify打造高效AI应用实践案例,加速AI项目落地进程
Xinference实战指南:全面解析LLM大模型部署流程,携手Dify打造高效AI应用实践案例,加速AI项目落地进程
|
1月前
|
人工智能 测试技术 PyTorch
AI计算机视觉笔记二十四:YOLOP 训练+测试+模型评估
本文介绍了通过正点原子的ATK-3568了解并实现YOLOP(You Only Look Once for Panoptic Driving Perception)的过程,包括训练、测试、转换为ONNX格式及在ONNX Runtime上的部署。YOLOP由华中科技大学团队于2021年发布,可在Jetson TX2上达到23FPS,实现了目标检测、可行驶区域分割和车道线检测的多任务学习。文章详细记录了环境搭建、训练数据准备、模型转换和测试等步骤,并解决了ONNX转换过程中的问题。