R语言多元(多变量)GARCH :GO-GARCH、BEKK、DCC-GARCH和CCC-GARCH模型和可视化

简介: R语言多元(多变量)GARCH :GO-GARCH、BEKK、DCC-GARCH和CCC-GARCH模型和可视化

全文链接:http://tecdat.cn/?p=30647


从Engle在1982发表自回归条件异方差(ARCH)模型的论文以来,金融时间序列数据的波动性就倍受关注。同时,近几年又出现了研究股票市场的波动传递性点击文末“阅读原文”获取完整代码数据


多市场的多维广义自回归条件异方差模型及其在不同条件下的扩展与变形,它们不仅包含了单变量的波动特性,而且很好的描述了不同变量间的相互关系。所以,多维GARCH模型为分析金融市场的相互影响提供了有力的工具。

我们围绕多变量GARCH技术进行一些咨询,帮助客户解决独特的业务问题。本文涉及多变量GARCH模型的构建。为此,请考虑以下模型

  • BEKK
  • CCC-GARCH 和 DCC-GARCH
  • GO-GARCH


BEKK


BEKK(1,1)具有以下形式:

下图显示了具有上述参数的模拟序列:

BEKK 模型的调整通常计算成本很高,因为它们需要估计大量参数。在本节中,我们将使用该包来估计上一节中模拟多变量序列的参数。

对于 BEKK 模型(1,1) 的调整,我们使用以下语法

fit.bek.m<-BE(matsim)

估计数由以下公式给出:


CCC-GARCH和DCC-GARCH


c.H1<-eccc.sim(nobs=1000, c.a1, c.A1, c.B1, c.R1, d.f=5, model="diagonal")
#'h'模拟条件方差的矩阵(T × N )
#'eps'是模拟的时间序列与(E)CCC-GARCH过程的矩阵(T × N )
plot.ts(c.H1$eps, main = "Processos simulados")

对于模拟过程,我们将使用相同的包估计参数,函数 .我们有两个模拟序列,然后我们假设它们遵循 CCC-GARCH(1,1) 以下过程

估算结果为:

DCC-GARCH

DCC-GARCH 模型是 CCC-GARCH 情况的推广,也就是说,我们有 R matris 不一定是固定的,也就是说它随时间变化:

模拟示例

为了模拟 DCC-GARCH 过程,我们考虑比较性能。

obs=1000, d.a1, d.A1, d.B1, d.R1, dcc.para=c(d.alpha1,d.beta1), d.f=5, model="diagonal")

点击标题查阅往期内容


MATLAB用GARCH-EVT-Copula极值理论模型VaR预测分析股票投资组合


01

02

03

04

ccgarch


与CCC-GARCH的情况一样,我们将使用以下初始量进行迭代过程

estimation(inia=d.w0,iniA=d.A0,iniB=d.B0,ini.dcc=d.w0,model="diagonal",dvar=d.H1$eps)

结果如下:

rmgarch


拟合模型的结果如下:

DCC-GARCH模型


最初,仅实现 DCC 模型(1,1)。

模拟模型平差的结果如下所示:

CCC-GARCH和DCC-GARCH模型的结论

我们在 CCC-GARCH 和 DCC-GARCH 示例中都看到,该软件包没有对模拟模型的参数提供令人满意的估计值。


GO-GARCH


在GO-GARCH模型中,我们对构建协方差矩阵的正交分解感兴趣

模拟

给出的矩阵M由下式给出:

我们将得到:

gog.rt<-t(M%*%t(bt))

gogarch


rmgarch


让我们首先指定流程参数:rmgarch

mean.model=list(model="constant"),distribution.model="mvnorm

根据估计因子构建数据矩阵的不同序列之间的估计关系表面

相关文章
|
4月前
|
机器学习/深度学习 算法 前端开发
R语言基础机器学习模型:深入探索决策树与随机森林
【9月更文挑战第2天】决策树和随机森林作为R语言中基础且强大的机器学习模型,各有其独特的优势和适用范围。了解并熟练掌握这两种模型,对于数据科学家和机器学习爱好者来说,无疑是一个重要的里程碑。希望本文能够帮助您更好地理解这两种模型,并在实际项目中灵活应用。
|
5月前
|
资源调度 数据挖掘
R语言回归分析:线性回归模型的构建与评估
【8月更文挑战第31天】线性回归模型是统计分析中一种重要且实用的工具,能够帮助我们理解和预测自变量与因变量之间的线性关系。在R语言中,我们可以轻松地构建和评估线性回归模型,从而对数据背后的关系进行深入的探索和分析。
【R语言实战】——Logistic回归模型
【R语言实战】——Logistic回归模型
|
26天前
|
存储 监控 算法
员工上网行为监控中的Go语言算法:布隆过滤器的应用
在信息化高速发展的时代,企业上网行为监管至关重要。布隆过滤器作为一种高效、节省空间的概率性数据结构,适用于大规模URL查询与匹配,是实现精准上网行为管理的理想选择。本文探讨了布隆过滤器的原理及其优缺点,并展示了如何使用Go语言实现该算法,以提升企业网络管理效率和安全性。尽管存在误报等局限性,但合理配置下,布隆过滤器为企业提供了经济有效的解决方案。
73 8
员工上网行为监控中的Go语言算法:布隆过滤器的应用
|
1月前
|
存储 Go 索引
go语言中数组和切片
go语言中数组和切片
45 7
|
1月前
|
Go 开发工具
百炼-千问模型通过openai接口构建assistant 等 go语言
由于阿里百炼平台通义千问大模型没有完善的go语言兼容openapi示例,并且官方答复assistant是不兼容openapi sdk的。 实际使用中发现是能够支持的,所以自己写了一个demo test示例,给大家做一个参考。
|
1月前
|
程序员 Go
go语言中结构体(Struct)
go语言中结构体(Struct)
112 71
|
1月前
|
存储 Go 索引
go语言中的数组(Array)
go语言中的数组(Array)
115 67
|
7天前
|
算法 安全 Go
Go语言中的加密和解密是如何实现的?
Go语言通过标准库中的`crypto`包提供丰富的加密和解密功能,包括对称加密(如AES)、非对称加密(如RSA、ECDSA)及散列函数(如SHA256)。`encoding/base64`包则用于Base64编码与解码。开发者可根据需求选择合适的算法和密钥,使用这些包进行加密操作。示例代码展示了如何使用`crypto/aes`包实现对称加密。加密和解密操作涉及敏感数据处理,需格外注意安全性。
30 14
|
7天前
|
Go 数据库
Go语言中的包(package)是如何组织的?
在Go语言中,包是代码组织和管理的基本单元,用于集合相关函数、类型和变量,便于复用和维护。包通过目录结构、文件命名、初始化函数(`init`)及导出规则来管理命名空间和依赖关系。合理的包组织能提高代码的可读性、可维护性和可复用性,减少耦合度。例如,`stringutils`包提供字符串处理函数,主程序导入使用这些函数,使代码结构清晰易懂。
40 11