PYTHON用KERAS的LSTM神经网络进行时间序列预测天然气价格例子

简介: PYTHON用KERAS的LSTM神经网络进行时间序列预测天然气价格例子

全文下载链接:http://tecdat.cn?p=26519


一个简单的编码器-解码器LSTM神经网络应用于时间序列预测问题:预测天然气价格,预测范围为 10 天。“进入”时间步长也设置为 10 天。) 只需要 10 天来推断接下来的 10 天。可以使用 10 天的历史数据集以在线学习的方式重新训练网络点击文末“阅读原文”获取完整代码数据


数据集是天然气价格查看文末了解数据获取方式 ,具有以下特征:

  • 日期(从 1997 年到 2020 年)- 为 每天数据
  • 以元计的天然气价格

读取数据并将日期作为索引处理


# 固定日期时间并设置为索引
dftet.index = pd.DatetimeIndex
# 用NaN来填补缺失的日期(以后再补)
dargt = f\_arget.reindex(ales, fill\_value=np.nan)
# 检查
print(d_tret.dtypes)
df_aget.head(10)

处理缺失的日期


# 数据归纳(使用 "向前填充"--根据之前的值进行填充)。
dfaet.fillna(method='ffill', inplace=True)


特征工程

因为我们正在使用深度学习,所以特征工程将是最小的。

  • One-hot 编码“is_weekend”和星期几
  • 添加行的最小值和最大值(可选)

通过设置固定的上限(例如 30 倍中位数)修复异常高的值

# 在df_agg中修复任何非常高的值 - 归一化为中值
for col in co\_to\_fi_ies:
    dgt\[col\] = fixnaes(dftget\[col\])

添加滞后

# 增加每周的滞后性
df\_tret = addag(d\_aget, tare\_arble='Price', step\_ak=7)
# 增加30天的滞后性
df\_get = ad\_ag(df\_ret, tagt\_able='Price', sep_bck=30)

# 合并后删除任何有NA值的列
d_gt.dropna(inplace=True)
print(dfget.shape)
tie\_nx = df\_art.index

归一化


  • 归一化或最小-最大尺度(需要减小较宽的数值范围,以便 LSTM 收敛)。

# 标准化训练数据\[0, 1\]

sclr = prcsing.Maxcaer((0,1))

准备训练数据集

  • 时间步数 = 1
  • 时间步数 = nsteout小时数(预测范围)

在这里,我们将数据集从 [samples, features] 转换为 [samples, steps, features] - 与算法 LSTM 一起使用的维度。下面的序列拆分使用“walk-forward”方法来创建训练数据集。

# 多变量多步骤编码器-解码器 lstm 示例
# 选择一个时间步骤的数量
# 维度变成\[样本数、步骤、特征\]
X, y = splices(datasformed, n\_ep\_in, n\_ep\_out)
# 分成训练/测试
et_ut = int(0.05*X.shpe\[0\])
X\_tain, X\_est, ytrain, y\_tst = X\[:-tetaont\], X\[-tes\_ont:\], y\[:-tstmunt\], y\[-es_unt:\]

训练模型

这利用了长期短期记忆算法。

# 实例化和训练模型
print
model = cre\_odel(n\_tps\_in, n\_tep\_out, n\_feures, lerig_rate=0.0001)

探索预测

%%time
#加载特定的模型
model = lod\_id\_del(
                           n_stepin, 
                           n\_sep\_out,
                           X_tan.shape\[2\])

# 展示对一个样本的预测
testle_ix = 0
yat = mdel.predict(X\_tet\[est\_amle\_ix\].reshape((1,n\_sep_in, nfatues)),erbose=Tue)

# 计算这一个测试样本的均方根误差
rmse = math.sqrt

plot\_result(yhat\[0\], scaler, saved\_columns)

点击标题查阅往期内容


Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析


01

02

03

04


平均 RMSE

# 收集所有的测试RMSE值
rmesores = \[\]
for i in range:
    yhat = oel.predict(Xtet\[i\].reshape((1, \_stes\_in, _faues)), verbose=False)
    # 计算这一个测试样本的均方根误差
    rmse = math.sqrt(mensqaerror(yhat\[0\], y_test\[i\]))

训练整个数据集

#在所有数据上实例化和训练模型
modl\_l = cret\_mel(nsep\_in, steps\_ou, n_etures,learnnrate=0.0001)
mde\_all, ru\_ime, weighfie = trin(md_all, X, y, batcsie=16, neohs=15)

样本内预测

注意:模型已经“看到”或训练了这些样本,但我们希望确保它与预测一致。如果它做得不好,模型可能会欠拟合或过拟合。要尝试的事情:

  • 增加或减少批量大小
  • 增加或减少学习率
  • 更改网络中 LSTM 的隐藏层数
# 获得10个步
da\_cent = dfret.iloc\[-(ntes\_in*2):-nsps_in\]
# 标准化
dta_ectormed = sclr.rasfrm(daareent)
# 维度变成\[样本数、步骤、特征\]
n_res = dtcentorm.shape\[1\]
X\_st = data\_recn\_trsrd.reshape((1, n\_tps\_n, n\_feares))
# 预测
foecst = mlll.predict(X_past)
# 扩大规模并转换为DF
forcast = forast.resape(n_eaturs))
foect = saer.inese_transform(forecast)
fuure\_dtes  df\_targe.ide\[-n\_steps\_out:\]
# 绘图
histrcl = d_aet.ioc\[-100:, :1\] # 获得历史数据的X步回溯
for i in ane(oisae\[1\]):
    fig = plt.igre(fgze=(10,5))
    
    # 绘制df_agg历史数据
    plt.plot(.iloc\[:,i\]
    
    # 绘制预测图
    plt.plot(frc.iloc\[:,i\])
    # 标签和图例
    plt.xlabel

预测样本外

# 获取最后10步
dtareent = dfargt.iloc\[-nstpsin:\]。
# 标准化
dta\_ecntranfomed = scaler.trasorm(data\_recent)
# 预测
forct = meall.rict(_past)
# 扩大规模并转换为DF
foreast = foecs.eshape(\_seps\_ut, n_eatures))
foreast = sclerinvers_tranorm(focast)
futur\_daes = pd.daternge(df\_argetinex\[-1\], priods=step_out, freq='D')
# 绘图
htrical = df_taet.iloc\[-100:, :1\] # 获得历史数据的X步回溯
# 绘制预测图
    plt.plot(fectoc\[:,i\])

相关文章
|
1月前
|
Python
【Leetcode刷题Python】376. 摆动序列
文章提供了解决LeetCode "摆动序列" 问题的Python实现代码,通过遍历整数数组并使用两个变量 down 和 up 来记录正差和负差摆动序列的长度,最终返回最长摆动子序列的长度。
29 0
|
1月前
|
存储 算法 数据挖掘
【2023年中国高校大数据挑战赛 】赛题 B DNA 存储中的序列聚类与比对 Python实现
本文介绍了2023年中国高校大数据挑战赛赛题B的Python实现方法,该赛题涉及DNA存储技术中的序列聚类与比对问题,包括错误率分析、序列聚类、拷贝数分布图的绘制以及比对模型的开发。
44 1
【2023年中国高校大数据挑战赛 】赛题 B DNA 存储中的序列聚类与比对 Python实现
|
12天前
|
机器学习/深度学习 数据采集 算法
时间序列结构变化分析:Python实现时间序列变化点检测
在时间序列分析和预测中,准确检测结构变化至关重要。新出现的分布模式往往会导致历史数据失去代表性,进而影响基于这些数据训练的模型的有效性。
29 1
|
20天前
|
机器学习/深度学习 算法 数据挖掘
6种有效的时间序列数据特征工程技术(使用Python)
在本文中,我们将探讨使用日期时间列提取有用信息的各种特征工程技术。
73 0
|
1月前
|
机器学习/深度学习 API 异构计算
7.1.3.2、使用飞桨实现基于LSTM的情感分析模型的网络定义
该文章详细介绍了如何使用飞桨框架实现基于LSTM的情感分析模型,包括网络定义、模型训练、评估和预测的完整流程,并提供了相应的代码实现。
|
12天前
|
机器学习/深度学习 索引 Python
python之序列
python之序列
134 59
|
24天前
|
机器学习/深度学习 Python
时间序列特征提取:从理论到Python代码实践
时间序列是一种特殊的存在。这意味着你对表格数据或图像进行的许多转换/操作/处理技术对于时间序列来说可能根本不起作用。
40 1
时间序列特征提取:从理论到Python代码实践
|
22天前
|
机器学习/深度学习 分布式计算 大数据
几行 Python 代码就可以提取数百个时间序列特征
几行 Python 代码就可以提取数百个时间序列特征
|
1月前
|
机器学习/深度学习 数据采集 算法
【优秀python算法毕设】基于python时间序列模型分析气温变化趋势的设计与实现
本文介绍了一个基于Python的时间序列模型,用于分析和预测2021-2022年重庆地区的气温变化趋势,通过ARIMA和LSTM模型的应用,揭示了气温的季节性和趋势性变化,并提供了对未来气温变化的预测,有助于气象预报和相关决策制定。
【优秀python算法毕设】基于python时间序列模型分析气温变化趋势的设计与实现
|
26天前
|
存储 缓存 安全
Python元组之不可变序列的奥秘与应用方式
Python 中的元组(Tuple)是一种有序的、不可变的数据结构,它是序列的一种特殊形式,就像一个固定大小的盒子,一旦放入物品就无法更换或移除。 元组可以包含任何类型的数据,如数字、字符串甚至是其他元组。 相比列表,元组在很多场景下提供了更高效、安全的选择。