R语言贝叶斯MCMC:GLM逻辑回归、Rstan线性回归、Metropolis Hastings与Gibbs采样算法实例

简介: R语言贝叶斯MCMC:GLM逻辑回归、Rstan线性回归、Metropolis Hastings与Gibbs采样算法实例

什么是频率学派?

在频率学派中,观察样本是随机的,而参数是固定的、未知的数量。

概率被解释为一个随机过程的许多观测的预期频率。

有一种想法是 "真实的",例如,在预测鱼的生活环境时,盐度和温度之间的相互作用有一个回归系数?

什么是贝叶斯学派?

在贝叶斯方法中,概率被解释为对信念的主观衡量。

所有的变量--因变量、参数和假设都是随机变量。我们用数据来确定一个估计的确定性(可信度)。

这种盐度X温度的相互作用反映的不是绝对的,而是我们对鱼的生活环境所了解的东西(本质上是草率的)。

目标

频率学派

保证正确的误差概率,同时考虑到抽样、样本大小和模型。

  • 缺点:需要对置信区间、第一类和第二类错误进行复杂的解释。
  • 优点:更具有内在的 "客观性 "和逻辑上的一致性。

贝叶斯学派

分析更多的信息能在多大程度上提高我们对一个系统的认识。

  • 缺点:这都是关于信仰的问题! ...有重大影响。
  • 优点: 更直观的解释和实施,例如,这是这个假设的概率,这是这个参数等于这个值的概率。可能更接近于人类自然地解释世界的方式。

实际应用中:为什么用贝叶斯

  • 具有有限数据的复杂模型,例如层次模型,其中

  • 实际的先验知识非常少

贝叶斯法则:

一些典型的贝叶斯速记法。


注意:

  • 贝叶斯的最大问题在于确定先验分布。先验应该是什么?它有什么影响?

目标:

计算参数的后验分布:π(θ|X)。

点估计是后验的平均值。

一个可信的区间是

你可以把它解释为一个参数在这个区间内的概率 。

计算

皮埃尔-西蒙-拉普拉斯(1749-1827)(见:Sharon Bertsch McGrayne: The Theory That Would Not Die)


  • 有些问题是可分析的,例如二项式似然-贝塔先验。
  • 但如果你有很多参数,这是不可能完成的操作
  • 如果你有几个参数,而且是奇数分布,你可以用数值乘以/整合先验和似然(又称网格近似)。
  • 尽管该理论可以追溯到1700年,甚至它对推理的解释也可以追溯到19世纪初,但它一直难以更广泛地实施,直到马尔科夫链蒙特卡洛技术的发展。

MCMC

MCMC的思想是对参数值θi进行 "抽样"。

回顾一下,马尔科夫链是一个随机过程,它只取决于它的前一个状态,而且(如果是遍历的),会生成一个平稳的分布。

技巧 "是找到渐进地接近正确分布的抽样规则(MCMC算法)。

有几种这样的(相关)算法。

  • Metropolis-Hastings抽样
  • Gibbs 抽样
  • No U-Turn Sampling (NUTS)
  • Reversible Jump

一个不断发展的文献和工作体系!

Metropolis-Hastings 算法

  1. 开始:
  2. 跳到一个新的候选位置:
  3. 计算后验:
  4. 如果
  5. 如果
  6. 转到第2步

Metropolis-Hastings: 硬币例子

你抛出了5个正面。你对θ的最初 "猜测 "是

MCMC:

p.old <- prior *likelihood 
while(length(thetas) <= n){
  theta.new <- theta + rnorm(1,0,0.05)
  p.new <- prior *likelihood 
  if(p.new > p.old | runif(1) < p.new/p.old){
    theta <- theta.new
    p.old <- p.new
  }

画图:

hist(thetas\[-(1:100)\] )
curve(6*x^5 )

采样链:调整、细化、多链

  • 那个 "朝向 "平稳的初始过渡被称为 "预烧期",必须加以修整。
  • 怎么做?用眼睛看
  • 采样过程(显然)是自相关的。
  • 如何做?通常是用眼看,用acf()作为指导。
  • 为了保证你收敛到正确的分布,你通常会从不同的位置获得多条链(例如4条)。
  • 有效样本量

MCMC 诊断法

R软件包帮助分析MCMC链。一个例子是线性回归的贝叶斯拟合(α,β,σ

plot(line)


预烧部分:

plot(line\[\[1\]\], start=10)

MCMC诊断法

查看后验分布(同时评估收敛性)。

density(line)


参数之间的关联性,以及链内的自相关关系

levelplot(line\[\[2\]\])
acfplot(line)

统计摘要

运行MCMC的工具(在R内部)

逻辑Logistic回归:婴儿出生体重低

logitmcmc(low~age+as.factor(race)+smoke )


plot(mcmc)

MCMC与GLM逻辑回归的比较

MCMC与GLM逻辑回归的比较

对于这个应用,没有很好的理由使用贝叶斯建模,除非--你是 "贝叶斯主义者"。你有关于回归系数的真正先验信息(这基本上是不太可能的)。

一个主要的缺点是 先验分布棘手的调整参数。

但是,MCMC可以拟合的一些更复杂的模型(例如,层次的logit MCMChlogit)。

Metropolis-Hastings

Metropolis-Hastings很好,很简单,很普遍。但是对循环次数很敏感。而且可能太慢,因为它最终会拒绝大量的循环。

Gibbs 采样


在Gibbs吉布斯抽样中,你不是用适当的概率接受/拒绝,而是用适当的条件概率在参数空间中行进。并从该分布中抽取一次。

然后你从新的条件分布中抽取下一个参数。

比Metropolis-Hastings快得多。有效样本量要高得多!

BUGS(OpenBUGS,WinBUGS)是使用吉布斯采样器的贝叶斯推理。

JAGS是 "吉布斯采样器"

其他采样器

汉密尔顿蒙特卡洛(HMC)--是一种梯度的Metropolis-Hastings,因此速度更快,对参数之间的关联性更好。

No-U Turn Sampler(NUTS)--由于不需要固定的长度,它的速度更快。这是STAN使用的方法(见http://arxiv.org/pdf/1111.4246v1.pdf)。


(Hoffman and Gelman 2011)

其他工具

你可能想创建你自己的模型,使用贝叶斯MC进行拟合,而不是依赖现有的模型。为此,有几个工具可以选择。

  • BUGS / WinBUGS / OpenBUGS (Bayesian inference Using Gibbs Sampling) - 贝叶斯抽样工具的鼻祖(自1989年起)。WinBUGS是专有的。OpenBUGS的支持率很低。
  • JAGS(Just Another Gibbs Sampler)接受一个用类似于R语言的语法编写的模型字符串,并使用吉布斯抽样从这个模型中编译和生成MCMC样本。可以在R中使用rjags包。
  • Stan(以Stanislaw Ulam命名)是一个类似于JAGS的相当新的程序--速度更快,更强大,发展迅速。从伪R/C语法生成C++代码。安装:http://mc-stan.org/rstan.html**
  • Laplace’s Demon 所有的贝叶斯工具都在R中:http://www.bayesian-inference.com/software

STAN


要用STAN拟合一个模型,步骤是:

  1. 为模型生成一个STAN语法伪代码(在JAGS和BUGS中相同
  2. 运行一个R命令,用C++语言编译该模型
  3. 使用生成的函数来拟合你的数据

STAN示例--线性回归

STAN代码是R(例如,具有分布函数)和C(即你必须声明你的变量)之间的一种混合。每个模型定义都有三个块。

_1_.数据块:

int n; //
  vector\[n\] y; // Y 向量

这指定了你要输入的原始数据。在本例中,只有Y和X,它们都是长度为n的(数字)向量,是一个不能小于0的整数。

_2_. 参数块

real beta1;  // slope

这些列出了你要估计的参数:截距、斜率和方差。


_3_. 模型块

sigma ~ inv_gamma(0.001, 0.001); 
    yhat\[i\] <- beta0 + beta1 * (x\[i\] - mean(x));}
    y ~ normal(yhat, sigma);

注意:

  • 你可以矢量化,但循环也同样快
  • 有许多分布(和 "平均值 "等函数)可用
请经常参阅手册! https://github.com/stan-dev/stan/releases/download/v2.9.0/stan-reference-2.9.0.pdf

2. 在R中编译模型

你把你的模型保存在一个单独的文件中, 然后用stan_model()命令编译这个模型。

这个命令是把你描述的模型,用C++编码和编译一个NUTS采样器。相信我,自己编写C++代码是一件非常非常痛苦的事情(如果没有很多经验的话),而且它保证比R中的同等代码快得多。

注意:这一步可能会很慢。

3. 在R中运行该模型

这里的关键函数是sampling()。还要注意的是,为了给你的模型提供数据,它必须是列表的形式

模拟一些数据。

X <- runif(100,0,20)
Y <- rnorm(100, beta0+beta1*X, sigma)

进行取样!

sampling(stan, Data)

这里有大量的输出,因为它计算了


print(fit, digits = 2)

MCMC诊断法

为了应用coda系列的诊断工具,你需要从STAN拟合对象中提取链,并将其重新创建为mcmc.list。

extract(stan.fit
alply(chains, 2, mcmc)


相关文章
|
7月前
|
机器学习/深度学习 存储 算法
用kNN算法诊断乳腺癌--基于R语言
用kNN算法诊断乳腺癌--基于R语言
|
3月前
|
机器学习/深度学习 算法 数据挖掘
R语言中的支持向量机(SVM)与K最近邻(KNN)算法实现与应用
【9月更文挑战第2天】无论是支持向量机还是K最近邻算法,都是机器学习中非常重要的分类算法。它们在R语言中的实现相对简单,但各有其优缺点和适用场景。在实际应用中,应根据数据的特性、任务的需求以及计算资源的限制来选择合适的算法。通过不断地实践和探索,我们可以更好地掌握这些算法并应用到实际的数据分析和机器学习任务中。
|
7月前
|
算法 项目管理
R语言实现蒙特卡洛模拟算法
R语言实现蒙特卡洛模拟算法
|
7月前
|
算法 搜索推荐
R语言混合SVD模型IBCF协同过滤推荐算法研究——以母婴购物平台为例
R语言混合SVD模型IBCF协同过滤推荐算法研究——以母婴购物平台为例
|
7月前
|
机器学习/深度学习 数据可视化
R语言Stan贝叶斯回归置信区间后验分布可视化模型检验|附数据代码
R语言Stan贝叶斯回归置信区间后验分布可视化模型检验|附数据代码
|
7月前
|
数据可视化 定位技术
R语言贝叶斯INLA空间自相关、混合效应、季节空间模型、SPDE、时空分析野生动物数据可视化
R语言贝叶斯INLA空间自相关、混合效应、季节空间模型、SPDE、时空分析野生动物数据可视化
|
7月前
|
存储 机器学习/深度学习 算法
R语言贝叶斯Metropolis-Hastings采样 MCMC算法理解和应用可视化案例
R语言贝叶斯Metropolis-Hastings采样 MCMC算法理解和应用可视化案例
|
8天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
5天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
3天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。