算法系列--动态规划--⼦数组、⼦串系列(数组中连续的⼀段)(1)(上)

简介: 算法系列--动态规划--⼦数组、⼦串系列(数组中连续的⼀段)(1)

💕"我们好像在池塘的水底,从一个月亮走向另一个月亮。"💕

作者:Mylvzi

文章主要内容:算法系列–动态规划–⼦数组、⼦串系列(数组中连续的⼀段)(1)

大家好,今天为大家带来的是算法系列--动态规划--⼦数组、⼦串系列(数组中连续的⼀段)(1),这是动态规划新的一种题型

1.最⼤⼦数组和

链接:

https://leetcode.cn/problems/maximum-subarray/

分析:

动态规划的子数组问题和前缀和问题是不一样的,

子数组和这道题要求的是子数组和的最大值,我们的状态表示就是记录以i位置为结束的所有子数组的最大和,而前缀和只是一种快速求出区间和的方法,并没有表示最大和这种状态

关于求最大子数组和问题这道题,要注意状态表示的含义以i位置为结尾的所有子数组的最大和,也就是必须以i位置为结尾,那么此时的状态其实只有两种:

  1. 单独一个
  2. 前面的一堆 + 它本身

网上的很多推到状态方程的时候其实很容易让人误解,解释的也不清楚,他们进行状态的分类是根据dp[i - 1]的正负来推导dp[i]的,有的人可能想为什么不判断nums[i]的正负呢?

其实本质都一样,笔者觉得单纯通过形式来推到方程更容易理解一些

子串/子数组问题的一个经验的状态分类就是按照长度分类的,因为他们的状态表示都比较固定,都是以i位置为结束的最大xxxx

有的题目还比较恶心(尤其是关于子串的问题),对于相同的子串有时候还需要去重,就需要额外开一个数组来统计次数

本题的分析思路:

代码:

class Solution {
    public int maxSubArray(int[] nums) {
        int n = nums.length;
        int dp = 0;
        int max = -0x3f3f3f3f;// 将最大/小值设置为+-ox3f3f3f3f是一种经验
        for(int num : nums) {
            dp = Math.max(num,dp + num);// 填表
            max = Math.max(max,dp);// 更新最值
        }
        return max;
    }
}

2.环形⼦数组的最⼤和

链接:

https://leetcode.cn/problems/maximum-sum-circular-subarray/description/

分析:

本题是上题的一个变种,这里带环了,对于带环的问题,我们最常用的一个做法是想办法将其转化为线性的,对于本题我们可以采用分类讨论的思想

根据什么区分类讨论呢?往往是根据最后结果可能出现的形式去考虑,对于本题,最长的子数组和可能是两种情况

  1. 不带环,在区间内部
  2. 带环,跨越区间

对于情况1,就是最大子数组和的解法,对于情况2,可以转化为求区间内的最小值,那么最大值就是sum - min,最后返回情况1和情况2的最大值即可

下面是详细分析过程

代码:

class Solution {
    public int maxSubarraySumCircular(int[] nums) {
        // 创建dp表
        int n = nums.length;
        if(n == 1) return nums[0];
        int[] f = new int[n];
        int[] g = new int[n];
        // 初始化
        f[0] = g[0] = nums[0];
        int max = -0x3f3f3f3f;
        int min = 0x3f3f3f3f;
        int sum = nums[0];
        // 填表
        for(int i = 1; i < n; i++) {
            f[i] = Math.max(nums[i],f[i - 1] + nums[i]);
            g[i] = Math.min(nums[i],g[i - 1] + nums[i]);
            max = Math.max(max,f[i]);
            min = Math.min(min,g[i]);
            sum += nums[i];
        }
        // 返回值
        return sum == min ? max : Math.max(max,sum - min);
    }
}

算法系列--动态规划--⼦数组、⼦串系列(数组中连续的⼀段)(1)(下)https://developer.aliyun.com/article/1480828?spm=a2c6h.13148508.setting.19.361f4f0eyTL4lb


目录
相关文章
|
3月前
|
存储 算法
深入了解动态规划算法
深入了解动态规划算法
85 1
|
3月前
|
算法 测试技术 C++
【动态规划算法】蓝桥杯填充问题(C/C++)
【动态规划算法】蓝桥杯填充问题(C/C++)
|
3月前
|
算法
Leetcode 初级算法 --- 数组篇
Leetcode 初级算法 --- 数组篇
49 0
|
2月前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
65 2
|
3月前
|
算法
动态规划算法学习三:0-1背包问题
这篇文章是关于0-1背包问题的动态规划算法详解,包括问题描述、解决步骤、最优子结构性质、状态表示和递推方程、算法设计与分析、计算最优值、算法实现以及对算法缺点的思考。
120 2
动态规划算法学习三:0-1背包问题
|
3月前
|
算法 程序员 索引
数据结构与算法学习七:栈、数组模拟栈、单链表模拟栈、栈应用实例 实现 综合计算器
栈的基本概念、应用场景以及如何使用数组和单链表模拟栈,并展示了如何利用栈和中缀表达式实现一个综合计算器。
56 1
数据结构与算法学习七:栈、数组模拟栈、单链表模拟栈、栈应用实例 实现 综合计算器
|
3月前
|
算法
动态规划算法学习四:最大上升子序列问题(LIS:Longest Increasing Subsequence)
这篇文章介绍了动态规划算法中解决最大上升子序列问题(LIS)的方法,包括问题的描述、动态规划的步骤、状态表示、递推方程、计算最优值以及优化方法,如非动态规划的二分法。
85 0
动态规划算法学习四:最大上升子序列问题(LIS:Longest Increasing Subsequence)
|
3月前
|
算法
动态规划算法学习二:最长公共子序列
这篇文章介绍了如何使用动态规划算法解决最长公共子序列(LCS)问题,包括问题描述、最优子结构性质、状态表示、状态递归方程、计算最优值的方法,以及具体的代码实现。
199 0
动态规划算法学习二:最长公共子序列
|
3月前
|
存储 算法 定位技术
数据结构与算法学习二、稀疏数组与队列,数组模拟队列,模拟环形队列
这篇文章主要介绍了稀疏数组和队列的概念、应用实例以及如何使用数组模拟队列和环形队列的实现方法。
31 0
数据结构与算法学习二、稀疏数组与队列,数组模拟队列,模拟环形队列
|
3月前
|
存储 人工智能 算法
【算法——动态规划】蓝桥ALGO-1007 印章(C/C++)
【算法——动态规划】蓝桥ALGO-1007 印章(C/C++)
【算法——动态规划】蓝桥ALGO-1007 印章(C/C++)

热门文章

最新文章